Citation: | HUANG Dong-mei, XU Wei. Dynamic Responses of Nonlinear Vibro-Impact Systems Under Narrow-Band Random Parametric Excitation[J]. Applied Mathematics and Mechanics, 2016, 37(6): 633-643. doi: 10.3879/j.issn.1000-0887.2016.06.009 |
[1] |
Babitsky V I.Theory of Vibro-Impact Systems and Applications [M]. Berlin: Springer-Verlag, 1998.
|
[2] |
Ibrahim R A.Vibro-Impact Dynamics: Modeling, Mapping and Applications [M]. Berlin: Springer-Verlag, 2009.
|
[3] |
XU Wei, HUANG Dong-mei, XIE Wen-xian. Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier[J].Chinese Physics B,2016,25(3): 030502. doi: 10.1088/1674-1056/25/3/030502.
|
[4] |
de Weger J, Binks D, Molenaar J, Van de Water W. Generic behavior of grazing impact oscillators[J].Physical Review Letters,1996,76(21): 3951-3954.
|
[5] |
Budd C, Dux F. Chattering and related behaviour in impact oscillators[J].Philosophical Transactions: Physical Sciences and Engineering,1994,347(1683): 365-389.
|
[6] |
Wagg D J. Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[J].Chaos Solitons & Fractals,2004,22(3): 541-548.
|
[7] |
LUO Guan-wei, CHU Yan-dong, ZHANG Yan-long, ZHANG Jian-gang. Double Neimark-Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops[J].Journal of Sound and Vibration,2006,298(1/2): 154-179.
|
[8] |
Dimentberg M F, Iourtchenko D V. Random vibrations with impacts: a review[J].Nonlinear Dynamics,2004,36(2): 229-254.
|
[9] |
Namachchivaya N S, Park J H. Stochastic dynamics of impact oscillators[J].Journal of Applied Mechanics,2005,72(6): 862-870.
|
[10] |
武娟, 许勇. 加性二值噪声激励下Duffing系统的随机分岔[J]. 应用数学和力学, 2015,36(6): 593-599.(WU Juan, XU Yong. Stochastic bifurcations in a Duffing system driven by additive dichotomous noises[J].Applied Mathematics and Mechanics,2015,36(6): 593-599.(in Chinese))
|
[11] |
FENG Jin-qian, XU Wei, WANG Rui. Stochastic responses of vibro-impact Duffing oscillator excited by additive Gaussian noise[J].Journal of Sound and Vibration,2008,309(3/5): 730-738.
|
[12] |
RONG Hai-wu, WANG Xiang-dong, XU Wei, FANG Tong. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation[J].Physics Review E,2009,80: 026604.
|
[13] |
李倩, 刘俊卿, 陈诚诚. 随机激励下四自由度车辆-道路耦合系统动力分析[J]. 应用数学和力学2015,36(5): 460-473.(LI Qian, LIU Jun-qing, CHEN Cheng-cheng. Dynamic analysis of the 4-DOF vehicle-road coupling system under random excitation[J].Applied Mathematics and Mechanics,2015,36(5): 460-473.(in Chinese))
|
[14] |
HUANG Dong-mei, XU Wei, LIU Di, HAN Qun. Multi-valued responses of a nonlinear vibro-impact system excited by random narrow-band noise[J].Journal of Vibration and Control,2014. doi: 10.1177/1077546314546512.
|
[15] |
RONG Hai-wu, MENG Guang, WANG Xiang-dong, XU Wei, FANG Tong. Invariant measures and Lyapunov exponents for stochastic Mathieu system[J].Nonlinear Dynamics,2002,30(4): 313-321.
|
[16] |
FENG Zhi-hua, LAN Xiang-jun, ZHU Xiao-dong. Principal parametric resonances of a slender cantilever beam subject to axial narrow-band random excitation of its base[J].International Journal of Non-Linear Mechanics,2007,42(10): 1170-1185.
|
[17] |
徐伟, 戎海武, 方同. 谐和与有界噪声联合参激作用下的visco-elastic系统[J]. 应用数学和力学, 2003,24(9): 963-972.(XU Wei, RONG Hai-wu, FANG Tong. Visco-elastic systems under both deterministic and bound random parametric excitation[J].Applied Mathematics and Mechanics,2003,24(9): 963-972.(in Chinese))
|
[18] |
Wedig W V. Invariant measures and Lyapunov exponents for generalized parameter fluctuations[J].Structural Safety,1990,8(1/4): 13-25.
|
[19] |
Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J].Mechanics of Solids,1976,11(2): 23-27.
|
[20] |
Oseledec V L. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems[J].Transactions of the Moscow Mathematical Society,1968,19: 197-231.
|
[21] |
RONG Hai-wu, MENG Guang, WANG Xiang-dong, XU Wei, FANG Tong. Largest Lyapunov exponent for second-order linear systems under combined harmonic and random parametric excitations[J].Journal of Sound and Vibration,2005,283(3/5): 1250-1256.
|
[22] |
戎海武, 王向东, 罗旗帜, 徐伟, 方同. 有界随机噪声激励下碰撞系统的最大Lyapunov指数[J]. 应用力学学报, 2013,30(5): 752-755.(RONG Hai-wu, WANG Xiang-dong, LUO Qi-zhi, XU Wei, FANG Tong. Maximal Lyapunov exponent of a single-degree-of-freedom linear vibroimpact system to a boundary random parametric excitation[J].Chinese Journal of Applied Mechanics,2013,30(5): 752-755.(in Chinese))
|
[23] |
Lin Y K, Cai G Q.Probabilistic Structural Dynamics: Advanced Theory and Applications[M]. New York: McGraw-Hill, 1995.
|
[24] |
HUANG Zhi-long, ZHU Wei-qiu. Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations[J].Probabilistic Engineering Mechanics,2004,19(3): 219-228.
|
[25] |
Yu J S, Lin Y K. Numerical path integration of a non-homogeneous Markov process[J].International Journal of Non-Linear Mechanics,2004,39(9): 1493-1500.
|
[26] |
ZHU Wei-qiu, Lu M Q, Wu Q T. Stochastic jump and bifurcation of a Duffing oscillator under narrow-band excitation[J].Journal of Sound and Vibration,1993,165(2): 285-304.
|