ZHAO Zhen-yu, HE Guo-qiang. Reconstruction of High Order Derivatives by New Mollification Methods[J]. Applied Mathematics and Mechanics, 2008, 29(6): 696-704.
Citation: ZHAO Zhen-yu, HE Guo-qiang. Reconstruction of High Order Derivatives by New Mollification Methods[J]. Applied Mathematics and Mechanics, 2008, 29(6): 696-704.

Reconstruction of High Order Derivatives by New Mollification Methods

  • Received Date: 2007-09-24
  • Rev Recd Date: 2008-03-24
  • Publish Date: 2008-06-15
  • The problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on L-generalized solution regularization methods was proposed. A concrete algorithm for the first three derivatives was presented, in which a modification of TSVD (called cTSVD (canonical truncated singular value decomposition)) is chosen as the needed regularization technique. The numerical examples given verify the theoretical results and show the efficiency of the new method.
  • loading
  • [1]
    Gorenflo R,Vessella S.Abel Integral Equations,Analysis and Application,Lecture Notes in Mathematics[M].Berlin:Springer-verlag,1991.
    [2]
    Deans S R.Radon Transform and Its Applications[M].New York:A Wiley-Interscience Publication,John Wiley & Sons Inc,1983.
    [3]
    Hanke M,Scherzer O.Inverse problems light:numerical differentiation[J].Amer Math Monthly,2001,108(6):512-521. doi: 10.2307/2695705
    [4]
    Murio D A.The Mollification Method and the Numerical Solution of Ill-Posed Problems[M].New York:A Wiley-Interscience Publication,John Wiley & Sons Inc,1993.
    [5]
    Murio D A, Mejia C E,Zhan S.Discrete mollification and automatic numerical differentiation[J].Compute Math Appl,1998,35(5):1-16.
    [6]
    Heinz W, Hanke M,Neubauer A.Regularization of Inverse Problems[M].Dordrecht:Kluwer Academic Publishers,1996.
    [7]
    Khan I R,Ohba R.New finite difference formulas for numerical differentiation[J].J Compu Appl Math,2000,126(1/2):269-276. doi: 10.1016/S0377-0427(99)00358-1
    [8]
    Wang Y B,Hon Y C,Cheng J.Reconstruction of high order derivatives from input data[J].J Inverse Ill-Posed Probl,2006,14(1):205-218. doi: 10.1515/156939406777571085
    [9]
    Wei T,Li M.High order numerical derivatives for one-dimensional scattered noisy data[J]. Appl Math Comput,2006,175(2):1744-1759. doi: 10.1016/j.amc.2005.09.018
    [10]
    Manselli P,Miller K.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J].Ann Mat Pura Appl,1980,123(4):161-183. doi: 10.1007/BF01796543
    [11]
    Murio D A.Numerical method for inverse transient heat conduction problems[J].Revista de la Union Mathematic Argentina,1981,30(1):25-36.
    [12]
    Hao D N.A mollification method for ill-posed problems[J].Numer Math,1994,68(4):469-506. doi: 10.1007/s002110050073
    [13]
    Elden L, Berntsson F,Reginska T.Wavelet and Fourier method for solving the sideways heat equation[J].SIAM J Scient Comp,2000,21(6):2187-2205. doi: 10.1137/S1064827597331394
    [14]
    He G Q.A TSVD form for ill-posed equations leading to optimal convergence rates[A].In:ICM 2002,Abstracts of Short Communication and Poster Sessions[C].Beijing:Higher Edu Press,2002,328.
    [15]
    Locker J,Prenter P M.Regularization with differential operators—Ⅰ general theory[J].J Math Anal Appl,1980,74(2):504-529. doi: 10.1016/0022-247X(80)90145-6
    [16]
    Adams R A.Sobolev Spaces[M].Pure and Applied Mathematics.Vol 65.New York-London:Academic Press,1975.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2678) PDF downloads(616) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return