| Citation: | LI Bo, WANG Ming-xin. Diffusion-Driven Instability and Hopf Bifurcation in the Brusselator System[J]. Applied Mathematics and Mechanics, 2008, 29(6): 749-756. | 
	                | [1] | 
					 Erneux T,Reiss E.Brusselator isolas[J].SIAM Journal on Applied Mathematics,1983, 43(6):1240-1246. doi:  10.1137/0143082 
					
					 | 
			
| [2] | 
					 Nicolis G.Patterns of spatio-temporal organization in chemical and biochemical kinetics[J].SIAM-AMS Proc,1974,8(1):33-58. 
					
					 | 
			
| [3] | 
					 Prigogene I, Lefever R.Symmetry breaking instabilities in dissipative systems Ⅱ[J].The Journal of Chemical Physics,1968,48(4):1665-1700. doi:  10.1063/1.1668893 
					
					 | 
			
| [4] | 
					 Brown K J,Davidson F A. Global bifurcation in the Brusselator system[J].Nonlinear Analysis,1995, 24(12):1713-1725. doi:  10.1016/0362-546X(94)00218-7 
					
					 | 
			
| [5] | 
					 Callahan T K, Knobloch E. Pattern formation in three-dimensional reaction-diffusion systems[J].Physica D,1999,132(3): 339-362. doi:  10.1016/S0167-2789(99)00041-X 
					
					 | 
			
| [6] | 
					 Rabinowitz P.Some global results for nonlinear eigenvalue problems[J].Journal of Functional Analysis,1971,7(3): 487-513. doi:  10.1016/0022-1236(71)90030-9 
					
					 | 
			
| [7] | 
					 Peng R, Wang M X. Pattern formation in the Brusselator system[J].Journal of Mathematical Analysis and Applications,2005,309(1): 151-166. doi:  10.1016/j.jmaa.2004.12.026 
					
					 | 
			
| [8] | 
					 Yi F Q,Wei J J,Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system[J].Nonlinear Analysis,2008,9(8):1038-1051. doi:  10.1016/j.nonrwa.2007.02.005 
					
					 | 
			
| [9] | 
					 Wang M X. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion[J].Mathematical Biosciences,2008,212(2): 149-160. doi:  10.1016/j.mbs.2007.08.008 
					
					 | 
			
| [10] | 
					 陆启韶.常微分方程的定性分析和分叉[M].北京:北京航空航天大学出版社,1989. 
					
					 | 
			
| [11] | 
					 Wang M X.Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion[J].Physica D,2004,196(1):172-192. doi:  10.1016/j.physd.2004.05.007 
					
					 | 
			
| [12] | 
					 Hassard B D, Kazarinoff N D, Wan Y H.Theory and Application of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981. 
					
					 | 
			
| [13] | 
					 Crandall Michael G,Rabinowitz Paul H.The Hopf bifurcation theorem in infinite dimensions[J].Archive for Rational Mechanics and Analysis,1977, 67(1): 53-72. doi:  10.1007/BF00280827 
					
					 |