| Citation: | DONG Ming, ZHOU Heng. Study on the Inflow Boundary Condition for DNS of Turbulent Boundary Layers on Supersonic Blunt Cones[J]. Applied Mathematics and Mechanics, 2008, 29(8): 893-904. | 
	                | [1] | 
					 董明,罗纪生.高超声速零攻角尖锥边界层转捩的机理[J].应用数学和力学,2007,28(8):912-920. 
					
					 | 
			
| [2] | 
					 董明.马赫数为6的零攻角钝锥湍流边界层空间演化的直接数值模拟[A].见:第6届西北地区计算物理学术会议论文集[C].陕西汉中,2008,90-97. 
					
					 | 
			
| [3] | 
					 董明,罗纪生.锥体效应对超音速湍流边界层统计特性的影响[J].力学学报,2008,40(3):394-401. 
					
					 | 
			
| [4] | 
					 Pirozzoli S, Grasso F, Gatski T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J].Physics of Fluid,2004,16(3):530-545. doi:  10.1063/1.1637604 
					
					 | 
			
| [5] | 
					 李新亮,傅德薰,马延文. 可压缩钝楔边界层转捩到湍流的直接数值模拟[J].中国科学,G辑,2004,34(4):466-480. 
					
					 | 
			
| [6] | 
					 Lund T S, Wu X H, Squires K D.Generation of turbulent inflow data for spatially-developing boundary layer simulations[J].J Comput Phys,1998,140(2):233-258. doi:  10.1006/jcph.1998.5882 
					
					 | 
			
| [7] | 
					 黄章峰,周恒. 湍流边界层的空间模式DNS的入口条件[J]. 中国科学,G辑,2008,38(3):310-318. 
					
					 | 
			
| [8] | 
					 唐洪涛. 不可压缩平板边界层从层流突变为湍流的机理及湍流特性[D].博士学位论文. 天津:天津大学,2007. 
					
					 | 
			
| [9] | 
					 Li X, Fu D, Ma Y. Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6[J].Chinese Phys Lett,2006,23(6):1519-1522. doi:  10.1088/0256-307X/23/6/045 
					
					 | 
			
| [10] | 
					 Guarini S E, Moser R D, Shariff K,et al.Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5[J].J Fluid Mech,2000,414(1):1-33. 
					
					 | 
			
| [11] | 
					 White F M.Viscous Fluid Flow[M].New York: McGraw-Hill, 1974. 
					
					 | 
			
| [12] | 
					 Gatski T B, Erlebacher G. Numerical simulation of a spatially evolving supersonic turbulent boundary layer[R]. NASA Tech Memo,2002, 2002-211934. 
					
					 | 
			
| [13] | 
					 Maeder T, Adams N A, Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach[J].J Fluid Mech,2001,429(1):187-216. doi:  10.1017/S0022112000002718 
					
					 |