| Citation: | DENG Zhen-guo, MA He-ping. Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation[J]. Applied Mathematics and Mechanics, 2009, 30(1): 30-39. | 
	                | [1] | 
					 Abe K,Inoue O.Fourier expansion solution of the KdV equation[J].J Computational Physics,1980, 34(2):202-210. doi:  10.1016/0021-9991(80)90105-9 
					
					 | 
			
| [2] | 
					 Fornberg B,Whitham G B. A numerical and theoretical study of certain nonlinear phenomena[J].Phil Trans Roy Soc London Ser A,1978,289(1361):373-404. doi:  10.1098/rsta.1978.0064 
					
					 | 
			
| [3] | 
					 Chan T F,Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,1985,22(3):441-454. doi:  10.1137/0722026 
					
					 | 
			
| [4] | 
					 Ma H P,Guo B Y. The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation[J].J Computational Physics,1986,65(1):120-137. doi:  10.1016/0021-9991(86)90007-0 
					
					 | 
			
| [5] | 
					 Maday Y,Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation[J].RAIRO Modélisation Mathématique et Analyse Numérique,1988,22(3):499-529. 
					
					 | 
			
| [6] | 
					 Kalisch H. Rapid convergence of a Galerkin projection of the KdV equation[J].Comptes Rendus Mathematique,2005,341(7):457-460. doi:  10.1016/j.crma.2005.09.006 
					
					 | 
			
| [7] | 
					 Bjrkav[KG-*4]. ag M,Kalisch H. Exponential convergence of a spectral projection of the KdV equation[J].Physics Letters A,2007,365(4):278-283. doi:  10.1016/j.physleta.2006.12.085 
					
					 | 
			
| [8] | 
					 Kreiss H O,Oliger J. Stability of the Fourier method[J].SIAM J Numerical Analysis,1979,16(3):421-433. doi:  10.1137/0716035 
					
					 | 
			
| [9] | 
					 Adams R A.Sobolev Spaces[M]. New York:Academic Press,1975. 
					
					 | 
			
| [10] | 
					 Ma M P,Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,2001,39(4):1380-1394. doi:  10.1137/S0036142900378327 
					
					 | 
			
| [11] | 
					 Wahlbin Lars B. A dissipative Galerkin method for the numerical solution of first order hyperbolic equations[A].In:de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,147-169. 
					
					 |