Citation: | CAI Xin, CAI Dan-lin, WU Rui-qian, XIE Kang-he. High Accurate Non-Equidlstant Method for Singular Perturbation Reaction-Diffusion Problem[J]. Applied Mathematics and Mechanics, 2009, 30(2): 171-178. |
[1] |
Farrell P, Hegarty A F, Miller J J H,et al. Robust Computational Techniques for Boundary Layers[M]. Boca Raton: Chapman and Hall/CRC, 2000.
|
[2] |
Miller J J H, O'Riordan E, Shishkin G I.Fitted Numerical Methods for Singular Perturbation Problems[M].Singapore: World Scientific, 1996.
|
[3] |
蔡新. 具有周期边界的守恒型方程的守恒型差分格式[J]. 应用数学和力学, 2001, 22(10):1092-1096.
|
[4] |
CAI Xin, LIU Fa-wang. Uniform convergence difference schemes for singularly perturbed mixed boundary problems[J].Journal of Computational and Applied Mathematics,2004,166(1):31-54. doi: 10.1016/j.cam.2003.09.038
|
[5] |
CAI Xin, LIU Fa-wang. A Reynolds uniform scheme for singularly perturbed parabolic differential equation[J].ANZIAM J,2007,47(5):633-648.
|
[6] |
Kellogg R B, Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points[J].Math Comp,1978,26(12):1025-1039.
|
[7] |
Bakhvalov N S. On the optimization of methods for boundary-value problems with boundary layers[J].USSR Computational Mathematics and Mathematical Physics,1969,9(4):139-166.
|
[8] |
Jayakumar J. Improvement of numerical solution by boundary value technique for singularly perturbed one dimensional reaction diffusion problem.[J].Applied Mathematics and Computation,2003,142(2):417-447. doi: 10.1016/S0096-3003(02)00312-0
|
[9] |
Beckett G, Mackenzie J A. On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution[J].Journal of Computational and Applied Mathematics,2001,131(1):381-405. doi: 10.1016/S0377-0427(00)00260-0
|
[10] |
Stynes M, Roos H G. The midpoint upwind scheme[J].Appl Numer Math,1997,23(3):361-374. doi: 10.1016/S0168-9274(96)00071-2
|
[11] |
Stynes M, Tobiska L. A finite difference analysis of a streamline diffusion method on a Shishkin mesh[J].Numer Algorithms,1998,18(3):337-360. doi: 10.1023/A:1019185802623
|
[12] |
Rashidiniab J, Ghasemia M, Mahmoodi Z. Spline approach to the solution of a singularly-perturbed boundary value problems[J].Applied Mathematics and Computation,2007,189(1):72-78. doi: 10.1016/j.amc.2006.11.067
|
[13] |
Clavero C, Gracia J. High order methods for elliptic and time dependent reaction-diffusion singularly perturbed problems[J].Applied Mathematics and Computation,2005,169(1):1109-1127.
|
[14] |
Cen Z D. A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient[J].Applied Mathematics and Computation,2005,169(1):689-699. doi: 10.1016/j.amc.2004.08.051
|