PAN Ke-jia, TAN Yong-ji, HU Hong-ling. Mathemtical Model and Numerical Method for Spontaneous Potential Log in Heterogeneous Formations[J]. Applied Mathematics and Mechanics, 2009, 30(2): 203-212.
Citation: PAN Ke-jia, TAN Yong-ji, HU Hong-ling. Mathemtical Model and Numerical Method for Spontaneous Potential Log in Heterogeneous Formations[J]. Applied Mathematics and Mechanics, 2009, 30(2): 203-212.

Mathemtical Model and Numerical Method for Spontaneous Potential Log in Heterogeneous Formations

  • Received Date: 2008-06-17
  • Rev Recd Date: 2008-12-03
  • Publish Date: 2009-02-15
  • A new spontaneous potential log model for the case when formation resistivity is not piecewise constant was introduced. The spontaneous potential satisfies an elliptic boundary value problem with jump conditions on interfaces. It was proved that the elliptic interface problem has a unique weak solution. lluthemwre, a jump ooaidition capturing finite difference scheme was proposed and applied to solve such elliptic problems. The validity and effectiveness of the proposed method were demonstrated through numerical examples.
  • loading
  • [1]
    Smits L J M. SP log interpretation in shaly sands[J].Trans AIME,1968,243(2):123-136.
    [2]
    Howard A Q. A new invasion model for resistivity log interpretation[J].The Log Analyst,1992,33(2):96-110.
    [3]
    Oppenheim A V,Schafer R W.Digital Signal Processing[M].New Jersey:Prentice Hall,1975.
    [4]
    Li T T,Tan Y J,Peng Y J,et al.Mathematical methods for the SP well-loging[A]. In:Spigler R,Ed.Applied and Industrial Mathematics[C]. Vol 1.Venice: Kluwer Academic Publishers,1991,343-349.
    [5]
    Li T T,Tan Y J,Peng Y J. Mathematical model and method for spontaneous potential well-logging[J].Eur J Appl Math,1994,5(2):123-139.
    [6]
    Li T T. A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis[J].J Comput Appl Math,1989,28(1989):49-62. doi: 10.1016/0377-0427(89)90320-8
    [7]
    Cai Z J. Asymptotic behavior for a class of elliptic equivalued surface boundary value problem with discontinuous interface conditions[J].Appl Math J Chinese Univ Ser B,1995,10(3):237-250. doi: 10.1007/BF02662867
    [8]
    张庚骥. 电法测井[M].上册. 北京:石油工业出版社,1984.
    [9]
    Adams R A.Sobolev Spaces[M].New York:Academic Press,1975.
    [10]
    彭跃军.一类偏微分方程边值问题适定的充分必要条件[J]. 同济大学学报,1988,16(1):91-100.
    [11]
    Zhou Y,Cai Z J. Convergence of a numerical method in mathematical spontaneous potential well-logging[J].Eur J Appl Math,1996,7(1):31-41.
    [12]
    Chew W C,Nie Z P,Liu Q H. An efficient solution for the response of electrical well logging tools in a complex environment[J].IEEE Trans Geosci Remote Sensing,1991,29(2):308-313. doi: 10.1109/36.73673
    [13]
    袁宁,聂在平,聂小春. 自然电位测井响应的高效数值模拟[J]. 地球物理学报,1998,41(增刊):429-436.
    [14]
    李海龙. 均匀地层中自然电位测井方程的“精确解”[J]. 数学年刊,A辑,1996,17(1):87-96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2868) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return