Citation: | PAN Ke-jia, TAN Yong-ji, HU Hong-ling. Mathemtical Model and Numerical Method for Spontaneous Potential Log in Heterogeneous Formations[J]. Applied Mathematics and Mechanics, 2009, 30(2): 203-212. |
[1] |
Smits L J M. SP log interpretation in shaly sands[J].Trans AIME,1968,243(2):123-136.
|
[2] |
Howard A Q. A new invasion model for resistivity log interpretation[J].The Log Analyst,1992,33(2):96-110.
|
[3] |
Oppenheim A V,Schafer R W.Digital Signal Processing[M].New Jersey:Prentice Hall,1975.
|
[4] |
Li T T,Tan Y J,Peng Y J,et al.Mathematical methods for the SP well-loging[A]. In:Spigler R,Ed.Applied and Industrial Mathematics[C]. Vol 1.Venice: Kluwer Academic Publishers,1991,343-349.
|
[5] |
Li T T,Tan Y J,Peng Y J. Mathematical model and method for spontaneous potential well-logging[J].Eur J Appl Math,1994,5(2):123-139.
|
[6] |
Li T T. A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis[J].J Comput Appl Math,1989,28(1989):49-62. doi: 10.1016/0377-0427(89)90320-8
|
[7] |
Cai Z J. Asymptotic behavior for a class of elliptic equivalued surface boundary value problem with discontinuous interface conditions[J].Appl Math J Chinese Univ Ser B,1995,10(3):237-250. doi: 10.1007/BF02662867
|
[8] |
张庚骥. 电法测井[M].上册. 北京:石油工业出版社,1984.
|
[9] |
Adams R A.Sobolev Spaces[M].New York:Academic Press,1975.
|
[10] |
彭跃军.一类偏微分方程边值问题适定的充分必要条件[J]. 同济大学学报,1988,16(1):91-100.
|
[11] |
Zhou Y,Cai Z J. Convergence of a numerical method in mathematical spontaneous potential well-logging[J].Eur J Appl Math,1996,7(1):31-41.
|
[12] |
Chew W C,Nie Z P,Liu Q H. An efficient solution for the response of electrical well logging tools in a complex environment[J].IEEE Trans Geosci Remote Sensing,1991,29(2):308-313. doi: 10.1109/36.73673
|
[13] |
袁宁,聂在平,聂小春. 自然电位测井响应的高效数值模拟[J]. 地球物理学报,1998,41(增刊):429-436.
|
[14] |
李海龙. 均匀地层中自然电位测井方程的“精确解”[J]. 数学年刊,A辑,1996,17(1):87-96.
|