| Citation: | ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442. | 
	                | [1] | 
					 Crane L I. Flow past a stretching plate[J].J Appl Mech Phys(ZAMP),1970,21:645-657. 
					
					 | 
			
| [2] | 
					 Brady J F, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity—an exact solution to the Navier-Stokes equations with reverse flow[J].J Fluid Mech,1981,112:127-150. doi:  10.1017/S0022112081000323 
					
					 | 
			
| [3] | 
					 Jacobi A M. A scale analysis approach to the correlation of continuous moving sheet (backward boundary layer) forced convective heat transfer[J].J Heat Trans-TASME,1993,115(4):1058-1061. doi:  10.1115/1.2911362 
					
					 | 
			
| [4] | 
					 Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Can J Chem Eng,1977,55:744-746. doi:  10.1002/cjce.5450550619 
					
					 | 
			
| [5] | 
					 Hussaini M Y, Lakin W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[J].SIAM J Appl Math,1987,47(4):699-709. doi:  10.1137/0147048 
					
					 | 
			
| [6] | 
					 McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier-stokes fluid due to a stretching boundary[J].Arch Ratl Mech Anal,1987,98(4):385-393. doi:  10.1007/BF00276915 
					
					 | 
			
| [7] | 
					 Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal Appl,1988,135(2):568-580. doi:  10.1016/0022-247X(88)90172-2 
					
					 | 
			
| [8] | 
					 Riley N, Weidman P D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary[J].SIAM J Appl Math,1989,49(5):1350-1358. doi:  10.1137/0149081 
					
					 | 
			
| [9] | 
					 Mahapatra T R, Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet[J].Heat and Mass Transfer,2002,38(6):517-521. doi:  10.1007/s002310100215 
					
					 | 
			
| [10] | 
					 Khan S K. Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation[J].Int J Heat Mass Transfer,2006,49(3/4):628-639. doi:  10.1016/j.ijheatmasstransfer.2005.07.049 
					
					 | 
			
| [11] | 
					 Liao S J.Beyond Perturbation:Introduction to Homotopy Analysis Method[M].Boca Raton:Chapman Hall/CRC, 2003. 
					
					 | 
			
| [12] | 
					 Liao S J, Pop I. Explicit analytic solution for similarity boundary layer equations[J].Int J Heat Mass Transter,2004,47(1):75-85. doi:  10.1016/S0017-9310(03)00405-8 
					
					 | 
			
| [13] | 
					 Xu H, Liao S J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate[J].J Non-Newtonian Fluid Mech,2005,129(1):46-55. doi:  10.1016/j.jnnfm.2005.05.005 
					
					 | 
			
| [14] | 
					 Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous streching plate[J].Phys Lett A,2006,358(6):396-403. doi:  10.1016/j.physleta.2006.04.117 
					
					 | 
			
| [15] | 
					 Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J].Phys Lett A,2006,355(1):18-26. doi:  10.1016/j.physleta.2006.01.092 
					
					 | 
			
| [16] | 
					 Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer[J].Phys Lett A,2006,360(1):109-113. doi:  10.1016/j.physleta.2006.07.065 
					
					 | 
			
| [17] | 
					 Hayat T, Sajid M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[J].Int J Heat mass Transter,2007,50(1/2):75-84. doi:  10.1016/j.ijheatmasstransfer.2006.06.045 
					
					 | 
			
| [18] | 
					 Tan Y, Xu H,Liao S J. Explicit series solution of travelling waves with a front of Fisher equation[J]. Chaos, Solitons and Fractals,2007,31(2):462-472. doi:  10.1016/j.chaos.2005.10.001 
					
					 |