DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅶ)——Incremental Rate Type[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1217-1222.
Citation: DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅶ)——Incremental Rate Type[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1217-1222.

Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅶ)——Incremental Rate Type

  • Received Date: 2002-09-06
  • Rev Recd Date: 2003-06-27
  • Publish Date: 2003-12-15
  • The purpose is to establish the rather complete equations of motion, boundary conditions and equation of energy rate of incremental rate type for micropolar continua. To this end the rather complete definitions for rates of deformation gradient and its inverse are made. The new relations between various stress and couple stress rate tensors are derived. Finally, the coupled equations of motion, boundary conditions and equation of energy rate of incremental rate type for continuum mechanics are obtained as a special case.
  • loading
  • [1]
    匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989.
    [2]
    戴天民.极性连续统的增率型运动方程和边界条件[J].应用数学和力学,2000,21(3):221-225.
    [3]
    戴天民.广义连续统场论中新的增率型功率和能率原理[J].应用数学和力学,2001,22(12):1243-1248.
    [4]
    DAI Tian-min.On basic laws and principles for continuum field theories[A].In:CHIEN Wei-zang Ed.Proceedings of the 4th International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press,2002,29-41.
    [5]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅰ)——微极连续统[J].应用数学和力学,2003,24(10):991-997.
    [6]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅱ)——微态连续统理论和偶应力理论[J].应用数学和力学,2003,24(10):998-1014.
    [7]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅵ)——质量和惯性守恒定律[J].应用数学和力学.2003,24(12):1211-1216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2398) PDF downloads(745) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return