ZHANG Hong-wu, HE Su-yan, LI Xing-si. Non-Interior Smoothing Algorithm for Frictional Contact Problems[J]. Applied Mathematics and Mechanics, 2004, 25(1): 42-52.
Citation: ZHANG Hong-wu, HE Su-yan, LI Xing-si. Non-Interior Smoothing Algorithm for Frictional Contact Problems[J]. Applied Mathematics and Mechanics, 2004, 25(1): 42-52.

Non-Interior Smoothing Algorithm for Frictional Contact Problems

  • Received Date: 2002-06-09
  • Rev Recd Date: 2003-09-03
  • Publish Date: 2004-01-15
  • A new algorithm for solving the three-dimensional elastic contact problem with friction is presented.The algorithm is a non-interior smoothing algorithm based on an NCP-function.The parametric variaxional principle and parametric quadratic programming methods wwe applied to the analysis of three-dimensional frictional contact problem.The solution of the contact problem was finally reduced to a linear complementarily problem,which was reformulated as a system of nonsmooth equalions via an NCP-function.A smoothing approximation to the nonsmooth equations was given by the aggregate function.A Newton method was used to solve the resulting smoothing nonlinear equations.The algorithm presented is easy to understand and implement.The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
  • loading
  • [1]
    Demyanov V F,Stavroulakis G E,Polyakova L N.Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics[M].Dordrecht: Kluwer Academic Publishers, 1996.
    [2]
    Kikuchi N, Oden J T.Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[M].Philadelphia: SIAM, 1988.
    [3]
    钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M]. 北京: 科学出版社,1997.
    [4]
    陈国庆,陈万吉,冯恩民. 三维接触问题非线性互补原理及算法[J]. 中国科学(A辑),1995,25(11):1181—1190.
    [5]
    李学文,陈万吉. 三维接触问题的非光滑算法[J]. 计算力学学报,2000,17(1):43—49.
    [6]
    Christensen P W,Klarbring A,Pang J S,et al.Formulation and comparison of algorithms for frictional contact problems[J].International Journal for Numerical Methods in Engineering, 1998,42:145—173. doi: 10.1002/(SICI)1097-0207(19980515)42:1<145::AID-NME358>3.0.CO;2-L
    [7]
    ZHANG Hong-wu, ZHONG Wan-xie, GU Yuan-xian.A combined parametric quadratic programming and iteration method for 3D elastic-plastic frictional contact problem analysis[J].Comput Meths Appl Mech Engrg,1998,155: 307—324. doi: 10.1016/S0045-7825(97)00170-9
    [8]
    ZHANG Hong-wu. Parametric variational principle for elastic-plastic consolidation analysis of saturated porous media[J].Int J Numer Anal Meths Geomechanics, 1995,19: 851—867. doi: 10.1002/nag.1610191203
    [9]
    ZHANG Hong-wu,Schrefler B A. Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: one dimensional model[J].European Journal of Solid Mechanics, A/Solids,2000,19(3): 503—524. doi: 10.1016/S0997-7538(00)00177-7
    [10]
    ZHANG Hong-wu, Galvanetto U, Schrefler B A. Local analysis and global nonlinear behaviour of periodic assemblies of bodies in elastic contact[J].Computational Mechanics,1999,24(4): 217—229. doi: 10.1007/s004660050510
    [11]
    张洪武,顾元宪,钟万勰. 传热与接触两类问题耦合作用的有限元分析[J]. 固体力学学报,2000,21(3):217—224.
    [12]
    Billups S C,Murty K G.Complementarity problems[J].Journal of Computational and Applied Mathematics,2000,124:303—318. doi: 10.1016/S0377-0427(00)00432-5
    [13]
    Wright S. J. Primal-Dual Interior-Point Methods[M]. Philadelphia: SIAM Publications, 1997.
    [14]
    修乃华,高自友. 互补问题算法的新进展[J]. 数学进展,1999,28(3):193—210.
    [15]
    Ferris M C, Kanzow C. Complementarity and related problems: A survey[A]. In:Pardalos P M,Resende M G C Eds:Handbook on Applied Optimization[C].New York:Oxford University Press,2002,514—530.
    [16]
    CHEN Chun-hui, Mangasarian O L. Smoothing methods for convex inequalities and linear complementarity problems[J].Mathematical Programming,1995,71: 51—69.
    [17]
    CHEN Bing-tong, XIU Nai-hua. A Global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions[J].SIAM Journal on Optimization, 1999,9:605—623. doi: 10.1137/S1052623497316191
    [18]
    Burke J V, XU Song.The global linear convergence of a non-interior path following algorithm for linear complementarity problems[J].Mathematics of Operations Research,1998,23:719—734. doi: 10.1287/moor.23.3.719
    [19]
    李兴斯. 一类不可微优化问题的有效解法[J]. 中国科学,A辑,1994,24(4):371—377.
    [20]
    Kanzow C.Some noninterior continuation methods for linear complementarity problems[J].SIAM J Matrix Anal Appl,1996,17(4):851—868. doi: 10.1137/S0895479894273134
    [21]
    Buczkowski R,Kleiber M.Elasto-plastic interface model for 3D-frictional orthotropic contact problems[J].International Journal for Numerical Methods in Engineering,1997,40:599—619. doi: 10.1002/(SICI)1097-0207(19970228)40:4<599::AID-NME81>3.0.CO;2-H
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2841) PDF downloads(691) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return