Citation: | YANG Shou-zhi, CHENG Zheng-xing, TANG Yuan-yan. Approximate Sampling Theorem for Bivariate Continuous Function[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1197-1203. |
[1] |
Shannon C E.A mathematical theory of communication[J].Bdll System Tech J,1948,27(3):379-423.
|
[2] |
Walter G G.A sampling theory for wavelet subspace[J].IEEE Trans Inform Theory,1992,38(2):881-884.
|
[3] |
郭田德,高自友,吴士泉.基于双尺度方程近似解的适合任何连续信号的近似采样定理[J].系统科学与数学,2001,21(1):64-71.
|
[4] |
杨守志,程正兴.有限区间小波子空间上的采样定理及H2(I)空间中函数的逼近表示[J].数学物理学报,2001,21(3):410-415.
|
[5] |
Daubechies I,Lagarias J.Two-scale defference equation,I:Global regularity of soutions[J].SLLAM J Math Anal,1991,22(5):1388-1410.
|
[6] |
Daubechies I,Lagarias J.Twoscale difference equation-ⅡI:Local regularity,infinite products and fractals[J].SLAM J Math Anal,1991,22(4):1031-1079.
|
[7] |
Lau K S,Wang J R.Characterization of solutions for two-scale dilation equations[J].SIAM J MathAnal,1995,25(4):1018-1046.
|
[8] |
程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
|
[9] |
Berger M A,Wang Y.Multidimensional two-scale dilation equations[A].In:Chui C K,Ed.Wavelet:Atutorial in Theory and Applications[C].New York:Academic Press,1992,295-323.
|
[10] |
HE Wen-jie,LAI Ming-jun.Examples of bivariae nonseparable compactly supported orthonormal continuons wavelets[J].IEEE Trans Inform Theory,2000,9(5):949-953.
|