| Citation: | YAN Hai-feng, LIU San-yang. New Method to Option Pricing for the General Black-Scholes Model-An Acturarial Approach[J]. Applied Mathematics and Mechanics, 2003, 24(7): 730-738. | 
	                | [1] | 
					 Merton R.Optimum consumption and portfolio rules in continuous time model[J].Journal of Economic Theory,1971,3(3):373-413. 
					
					 | 
			
| [2] | 
					 Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(4):633-654. 
					
					 | 
			
| [3] | 
					 Duffie D.Security Markets:Stochastic Models[M].Boston:Academic Press,1988. 
					
					 | 
			
| [4] | 
					 Bladt M,Rydberg H T.An actuarial approach to option pricing under the physical measure and without market assumptions[J].Insurance:Mathematics and Economics,1998,22(1):65-73. 
					
					 | 
			
| [5] | 
					 Duffie D.Dynamic Asset Pricing Theory[M].Princeton,New Jersey:Princeton University Press,1996. 
					
					 | 
			
| [6] | 
					 Merton R.Continuous-Time Finance[M].Oxford:Blacwell Publishers,1990. 
					
					 | 
			
| [7] | 
					 Kouritzin M A,Deli Li.On explicit solution to stochastic differential equation[J].Stochastic Analysis and Applications,2000,18(4):571-580. 
					
					 | 
			
| [8] | 
					 薛宏.鞅方法在未定权益定价中的应用[J].工程数学学报,2000,17(1):135-138. 
					
					 | 
			
| [9] | 
					 Roos Cox J C,Rubinstein S A.Option pricing:A simplified approach[J].Journal of Economics,1979,7(2):229-263. 
					
					 | 
			
| [10] | 
					 Bernt,Фksendal.Stochasitc Differential Equations[M].Fourth Ed.New York:Springer-Verlag,1995. 
					
					 |