| Citation: | YANG ling, LIU Zeng-rong, MAO Jian-min. Controlling Hyperchaos in Planar Systems by Adjusting Parameters[J]. Applied Mathematics and Mechanics, 2003, 24(4): 351-356. | 
	                | [1] | 
					 Ott E,Grebogi C,Yorke J A.Controlling Chaos[J].Phys Rev Lett,1990,64(11):1196-1199. 
					
					 | 
			
| [2] | 
					 Ditto W L,Rauseo S N,Spano M L.Experimental control of chaos[J].Phys Rev Lett,1990,65(26):3211-3214. 
					
					 | 
			
| [3] | 
					 Singer J,Wang Y-Z,Bau H H.Controlling a chaotic system[J].Phys Rev Lett,1991,66(9):1123-1125. 
					
					 | 
			
| [4] | 
					 Auerbach D,Grebogi C,Ott E,et al.Controlling chaos in high dimensional systems[J].Phys Rev Lett,1992,69(24):3479-3482. 
					
					 | 
			
| [5] | 
					 Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys Lett A,1992,176(6):421-428. 
					
					 | 
			
| [6] | 
					 Petrov V,Peng B,Showalter K.A map-based algorithm for controlling tow-dimensional chaos[J].J Phys Chem,1992,96(5):7506-7513. 
					
					 | 
			
| [7] | 
					 Romeiras F J,Grebogi C,Ott E,et al.Controlling chaotic dynamic systems[J].Phys D,1992,58(2):165-192. 
					
					 | 
			
| [8] | 
					 杨凌,刘曾荣.OGY方法的改进及证明[J].应用数学和力学,1998,19(1):1-7. 
					
					 | 
			
| [9] | 
					 Shinbrot T,Ott E,Grebogi C,et al.Using chaos to direct trajectories to targets[J].Phys Rev Lett,1990,65(26):3215-3218. 
					
					 | 
			
| [10] | 
					 Shinbrot T,Grebogi C,Ott E,et al.Using chaos to target stationary states for flows[J].Phys Lett A,1992,169(3):349-354. 
					
					 | 
			
| [11] | 
					 Shinbrot T,Ott E,Grebogi C,et al.Using chaos to direct orbits to targets in systems described by a one-dimensional map[J].Phys Rev A,1992,45(6):4165-4168. 
					
					 | 
			
| [12] | 
					 Paskota M,Mees A I,Teo K L.Directing orbits of chaotic dynamical systems[J].Int J Bifur Chaos,1995,5(2):573-583. 
					
					 | 
			
| [13] | 
					 Yang L,Liu Z,Mao J.Controlling hyperchaos[J].Phys Rev Lett,2000,84(1):67-70. 
					
					 |