LUO Zhen-dong, ZHU Jiang, WANG Hui-jun. A Nonlinear Galerkin/Petrov-Least Squares Mixed Element Method for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(7): 697-706.
Citation: LUO Zhen-dong, ZHU Jiang, WANG Hui-jun. A Nonlinear Galerkin/Petrov-Least Squares Mixed Element Method for the Stationary Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2002, 23(7): 697-706.

A Nonlinear Galerkin/Petrov-Least Squares Mixed Element Method for the Stationary Navier-Stokes Equations

  • Received Date: 2000-09-08
  • Rev Recd Date: 2002-03-30
  • Publish Date: 2002-07-15
  • A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu韐a-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is.
  • loading
  • [1]
    Foias C,Manley O P,Temam R.Modelization of the interaction of small and large eddies in two dimensional turbulent flows[J].Math Mod Numer Anal,1988,22(2):93-114.
    [2]
    Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal,1989,2(5):1139-1157.
    [3]
    Foias C,Jolly M,Kevrekidis I G,et al.Dissipativity of numerical schemes[J].Nonlinearity,1991,4(4):591-613.
    [4]
    Devulder C,Marion M,Titi E.On therate of convergence of nonlinear Galerkin methods[J].Math Comp,1992,59(200):173-201.
    [5]
    Marion M,Temam R.Nonlinear Galerkin methods:the finite elementcase[J].Numer Math,1990,57(3):205-226.
    [6]
    Marion M,Xu J C.Errorestimates on a new nonlinear Galer kinmeth od based on two-grid finite elements[J].SIAM J Numer Anal,1995,32 (4):1170-1184.
    [7]
    Ait Ou Ammi A,Marion M.Nonlinear Galerkin methods and mixed finite elements:two-grid algorithms for the Navier-Stokes equations[J].Numer Math,1994,68(2):189-213.
    [8]
    LI Kai-tai,Zhou L.Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations[J].Math Numer Sinica,1995,17(4):360-380.
    [9]
    LUO Zhen-dong,Wang L H.Nonlinear Galerkin mixed element methods for the nonstationary conduction-convection problems(Ⅰ):The continuous-time case[J].Mathematica Numerica Sinica,1998,20(3):283-304.
    [10]
    LUO Zhen-dong,Wang L H.Nonlinear Galerkin mixed element methods for the nonstationary conduction-convection problems(Ⅱ):The backward one-step Euler fully discrete format[J].Mathematica Numerica Sinica,1998,20[STBZ](4):90-108.
    [11]
    Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations:Theorem and Algorithms[M].New York:Springer-Verlag,1986.
    [12]
    Temam R.Navier-Stokes Equations[M].New York,Amsterdam:North-Holland,1984.
    [13]
    France L P,Hughes T J.Two classes of mixed finite element methods[J].Comput Methods Appl Mech Engrg,1988,69(1):89-129.
    [14]
    Hughes T J,France L P,Balestra M.A new finite element formulation for computational fluid dynamics (Ⅴ):Circumventing the Bubuka-Brezzi condition:Astable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation[J].Comput Methods Appl Mech Engrg,1986,(1):85-99.
    [15]
    Hughes T J,France L P.A new finite element formulation for computations fluid dynamics (Ⅶ):The Stokes problem with various well posed boundary conditions,symmetric formulations that converge for all velocity pressurespace[J].Comput Methods Appl Mech Engrg,1987,65(1):85-96.
    [16]
    Brezzi F,Douglas Jr J.Stabilized mixed method for the Stokes problem[J].Numer Math,1988,53(2):225-235.
    [17]
    Douglas Jr J,Wang J P.An absolutely stability finite element method for the stokes problem[J].Math Comp,1989,52(186):495-508.
    [18]
    Houghes T J,Tezduyar T E.Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations [J].Comput Methods Appl Mech Engrg,1984,45(3):217-284.
    [19]
    Johson C,Saranen J.Stremline diffusion methods for the incompre ssible Euler and Navier-Stokes equations[J].Math Comp,1986,47(175):1-18.
    [20]
    Hansbo P,Szepessy A.Avelocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Engrg,1990,84(2):175-192.
    [21]
    Zhou T X,Feng M F,Xiong H X.A new approach to stability of finite elements under divergence constraints[J].J Comput Math,1992,1 0(1):1-15.
    [22]
    Zhou T X,Feng M F.A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Math Comp,1993,60(202):531-543.
    [23]
    罗振东.有限元混合法理论基础及其应用:发展与应用[M].济南:山东教育出版社,1996.
    [24]
    Ciarlet P G.The Finite Element Method for Elliptic Problems [M].Amsterdam:North-Holland,1978.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2562) PDF downloads(1215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return