Citation: | CHENG Shi-qing, ZHANG Shen-zhong, HUANG Yan-zhang, ZHU Wei-yao. Sensitivity of Single-Phase Flow in Low-Permeability Heterogeneous Reservoirs[J]. Applied Mathematics and Mechanics, 2002, 23(6): 635-642. |
[1] |
Jacquard P, Jain C. Permeadility distribution from field pressure date[J]. Soc Pet Eng J,1965,5(12):281-294.
|
[2] |
Anterion F, Eymard R, Karcher B. Use of parameter gradients for reservoir history matching[A]. In: the 1989 SPE Symposium on Reservoir Simulation[C]. Paper SPE18433,Houston,1989,339-349.
|
[3] |
Killough J E, Sharma Y, Dupuym A, et al. A multiwell right hand side iterative solver for history matching[A]. In: the 1995 SPE Symposium on Reservoir Simulation[C]. Paper SPE29119,Houston,1995,249-255.
|
[4] |
Chu L, Reynolds A C, Oliver D S. Computation of sensitivity coefficients for conditioning the permeability field to well-test pressure data[J]. In Situ,1995,19(2):179-223.
|
[5] |
Tang Y N, Chen Y M, Wasserman M L. Generalized pulse-spectrum technique for 2-D and 2-phase history matching[J]. Applied Numerical Mathematics,1989,5(5):529-539.
|
[6] |
Carter R D, Kemp L F Jr, Pirece A C, et al. Performance matching with constrains[J]. Soc Pet Eng J,1974,14(4):187-196.
|
[7] |
He Nanque, Reynolds A C, Oliver D S. Three-dimensional reservoir description from multiwell pressure data and prior information[J]. Soc Pet Eng J,1997,2(3):312-327.
|
[8] |
Richard Ewing E, Pilant Michael S, Wade Gordon J, et al. Estimating parameters in scientific computation[J]. IEEE Computational Science & Engineering,1994,1(1):19-31.
|
[9] |
程时清. 低渗透非均质油藏渗流特征及反问题研究[D]. 博士论文. 河北廊坊:渗流流体力学研究所,2000.
|
[1] | LIN Yunyun, ZHENG Supei, FENG Jianhu, JIN Fang. Diffusive Regularization Inverse PINN Solutions to Discontinuous Problems[J]. Applied Mathematics and Mechanics, 2023, 44(1): 112-122. doi: 10.21656/1000-0887.430010 |
[2] | YU Mengnan. Well-Test Analysis of Hydraulic Fractured Wells in Fracture-Vug Low-Permeability Carbonate Reservoirs[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1147-1158. doi: 10.21656/1000-0887.390256 |
[3] | ZHOU Huanlin, YAN Jun, YU Bo, CHEN Haolong. Identification of Thermal Diffusion Coefficients for Transient Heat Conduction Problems With Heat Sources[J]. Applied Mathematics and Mechanics, 2018, 39(2): 160-169. doi: 10.21656/1000-0887.380199 |
[4] | ZHOU Shuo, Lü Xiao-huan, WANG Xiao-xue. On the Construction of Stiffness Matrices With 3 Vector Pairs for Beam Vibration Systems[J]. Applied Mathematics and Mechanics, 2015, 36(3): 303-314. doi: 10.3879/j.issn.1000-0887.2015.03.008 |
[5] | ZHOU Shuo, HAN Ming-hua, MENG Huan-huan. Bisymmetric Damping and Stiffness Matrices Calibration With Test Data of Vibration Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 697-711. doi: 10.3879/j.issn.1000-0887.2014.06.012 |
[6] | ZHANG Tao, LU Mei, LI Bo-han, TAO Liang. Study of Self-Adaptive Ant Colony Optimization for Heat Source Search in Inverse Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(7): 823-830. doi: 10.3879/j.issn.1000-0887.2014.07.012 |
[7] | ZHOU Huan-lin, XU Xing-sheng, LI Xiu-li, CHEN Hao-long. Identification of Temperature-Dependent Thermal Conductivity for 2-D Transient Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351. doi: 10.3879/j.issn.1000-0887.2014.12.006 |
[8] | ZHOU Shuo, WANG Lin, HAN Ming-hua. Centrosymmetric Solutions of Constrained Matrix Equation and Its Application to Inverse Problem of Vibration Theory[J]. Applied Mathematics and Mechanics, 2013, 34(3): 306-317. doi: 10.3879/j.issn.1000-0887.2013.03.010 |
[9] | WANG De-ming. Difference Inversion Model of a Wave Equation[J]. Applied Mathematics and Mechanics, 2008, 29(3): 325-330. |
[10] | HE Guo-qiang, MENG Ze-hong. A Newton Type Iterative Method for Heat-Conduction Inverse Problems[J]. Applied Mathematics and Mechanics, 2007, 28(4): 479-486. |
[11] | WANG De-ming, GAI Bing-zheng. Way to Determine the Stiffness Function of Structure[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1453-1458. |
[12] | WANG Yi-bo, YANG Hai-tian, WU Rui-feng. Precise Integral Algorithm Based Solution for Transient Inverse Heat Conduction Problems With Multi-Variables[J]. Applied Mathematics and Mechanics, 2005, 26(5): 512-518. |
[13] | YOU Yun-xiang, MIAO Guo-ping. Numerical Method for the Shape Reconstruction of a Hard Target[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1090-1100. |
[14] | YAO Zhi-yuan. Theoretical Model of Vibrating Object Transmitting Noise Towards External Sound[J]. Applied Mathematics and Mechanics, 2002, 23(3): 316-320. |
[15] | LI Shu, ZHANG Fang, WANG Bo, ZHANG Xiao-gu. Proper Application of a Kind of Matrix Construction Method in Physical Parameter Identification of Dynamic Model[J]. Applied Mathematics and Mechanics, 2002, 23(5): 541-547. |
[16] | GUO Da-li, LIU Ci-qun, ZHAO Jin-zhou. Dynamic Production Prediction and Parameter Identification for Gas Well With Vertical Fracture[J]. Applied Mathematics and Mechanics, 2002, 23(6): 563-568. |
[17] | CHEN Fang-qi, CHEN Yu-shu, WU Zhi-qiang. Global Solution of the Inverse Problem for a Class of Nonlinear Evolution Equations of Dispersive Type[J]. Applied Mathematics and Mechanics, 2002, 23(2): 139-143. |
[18] | Song Fuquan, Liu Ciqun, Li Fanhua. Transient Pressure of Percolation Through One Dimension Porous Media with Threshold Pressure Gradient[J]. Applied Mathematics and Mechanics, 1999, 20(1): 25-32. |
[19] | Li Shu, Feng Taihua, . Higher Order Sensitivities in Structural Static Design[J]. Applied Mathematics and Mechanics, 1997, 18(4): 367-372. |
[20] | Ding Hua, Zheng Zhe-min, Xu Shou-ze. A New Approach to Inverse Problems of Wave Equations[J]. Applied Mathematics and Mechanics, 1990, 11(12): 1043-1047. |