LIU Yu-Ji. Global Attractivity for a Class of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2002, 23(3): 321-330.
Citation: LIU Yu-Ji. Global Attractivity for a Class of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2002, 23(3): 321-330.

Global Attractivity for a Class of Nonlinear Delay Difference Equations

  • Received Date: 2000-06-07
  • Rev Recd Date: 2001-08-25
  • Publish Date: 2002-03-15
  • The global attractivity of the delay difference equation $xn+anxn+f{}=0, which includes the discrete type of many mathematical ecologic equations,was dicussed.The sufficient conditions that guarantee every solution to converge to zero were obtained.Many known results are improved and generated.
  • loading
  • [1]
    罗交晚,庾建设. 具分布时滞偏差变元非自治数学生态系统的全局渐近稳定性[J]. 数学学报,1998,41(6):1273-1282.
    [2]
    周展,庾建设. 非自治时滞差分方程的线性化渐近稳定性,数学年刊[J]. 1998,19A(3):301-308.
    [3]
    ZHOU Zhan, ZHANG Qin-qin. Uniform stability of nonlinear difference systems[J]. J Math Anal Appl,1998,486-500.
    [4]
    申建华,庾建设,王志成. 一维非线性泛函微分方程的全局吸引性[J]. 高校应用数学学报(A辑),1996,11(1):1-6.
    [5]
    Erbe L H, Xia H, Yu J S. Global stability of a linear nonautonomous delay difference equation[J]. J Difference Equ Appl,1995,1:151-161.
    [6]
    时宝,王志成. 时滞差分方程的正解与全局渐近稳定性[J]. 高校应用数学学报 A辑,1997,12(4):379-384.
    [7]
    Gopalsamy K. Stability and Oscillation in Deay Differential Equations of Population Dynamics[M]. Boston:Kluwer Academic Publishers,1992.
    [8]
    罗交晚,刘再明. 非自治时滞微分方程的扰动全局吸引性[J]. 应用数学和力学,1998,19(12):1107-1111.
    [9]
    庾建设. 非自治时滞微分方程的渐近稳定性[J]. 科学通报,1997,42(12):1248-1252.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2282) PDF downloads(542) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return