| Citation: | ZHU Zheng-you, LI Gen-guo, CHENG Chang-jun. Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation[J]. Applied Mathematics and Mechanics, 2002, 23(1): 1-10. | 
	                | [1] | 
					 GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96. 
					
					 | 
			
| [2] | 
					 BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155. 
					
					 | 
			
| [3] | 
					 Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3):294-298. 
					
					 | 
			
| [4] | 
					 Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[J].Appl Mech Rev, 1997, 50(1): 15-67. 
					
					 | 
			
| [5] | 
					 Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163. 
					
					 | 
			
| [6] | 
					 Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932. 
					
					 | 
			
| [7] | 
					 陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902. 
					
					 | 
			
| [8] | 
					 Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993. 
					
					 | 
			
| [9] | 
					 罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994. 
					
					 | 
			
| [10] | 
					 Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4):636-649. 
					
					 | 
			
| [11] | 
					 刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998. 
					
					 |