Citation: | ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81. |
[1] |
Shepherd T G.Nonlinear saturation of baroclinic instability.Part-one: the two-layer model[J].Journal of the Atmospheric Sciences, 1988,Vo1.45(14):2014-2025.
|
[2] |
Shepherd T G.Nonlinear saturation of baroclinic insability.part-two: Continuousiy-statified fluid [J].Journalof the Atmospheric Sciences,1989,46(7):888-907.
|
[3] |
Shepherd T G.Nonlinear saturation of baroclinic instability.Part-Three: bounds on tie energy[J].Jorrnal of the Atemospheric Sciences, 1993,Vol.50(16):2697-2709.
|
[4] |
ZENG Qing-cun.Variational principle of instability of atrnosphic motions[J].Adv Atmos Sci,1989,6(2): 137-172.
|
[5] |
MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions geophys astroph[J].Fluid Dynamics, 1992,65:57-76.
|
[6] |
Paret J, Vanneste J.Nonlinear saturation of haroclinic instability in a three-layer model[J].J Atmos Sci, 1996,53(20), 2905-2917.
|
[7] |
Cho H R, Shepherd T G, Vladimirov V A.Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].J Atmos Sci, 1993,50(6): 822-334.
|
[8] |
MU Mu, Shepherd T G, Swanson K.On nonlinear symmetric stablity and the nonlinear saturation of symmetric instability[J].J Atmos Sci, 1996,53(20):2918-2923.
|
[9] |
MU Mu, ZENG Qing-cun, Shepherd T G, et al.Nonlinear stability of multilayer quasi-geostrophic flow[J].J Fluid Mech, 1994,264:165-184.
|
[10] |
张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,,1999,20(2):133-143.Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)-the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J].IEEE AC,1999,44(2):334-336.
|