| Citation: | ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81. | 
	                | [1] | 
					 Shepherd T G.Nonlinear saturation of baroclinic instability.Part-one: the two-layer model[J].Journal of the Atmospheric Sciences, 1988,Vo1.45(14):2014-2025. 
					
					 | 
			
| [2] | 
					 Shepherd T G.Nonlinear saturation of baroclinic insability.part-two: Continuousiy-statified fluid [J].Journalof the Atmospheric Sciences,1989,46(7):888-907. 
					
					 | 
			
| [3] | 
					 Shepherd T G.Nonlinear saturation of baroclinic instability.Part-Three: bounds on tie energy[J].Jorrnal of the Atemospheric Sciences, 1993,Vol.50(16):2697-2709. 
					
					 | 
			
| [4] | 
					 ZENG Qing-cun.Variational principle of instability of atrnosphic motions[J].Adv Atmos Sci,1989,6(2): 137-172. 
					
					 | 
			
| [5] | 
					 MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions geophys astroph[J].Fluid Dynamics, 1992,65:57-76. 
					
					 | 
			
| [6] | 
					 Paret J, Vanneste J.Nonlinear saturation of haroclinic instability in a three-layer model[J].J Atmos Sci, 1996,53(20), 2905-2917. 
					
					 | 
			
| [7] | 
					 Cho H R, Shepherd T G, Vladimirov V A.Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].J Atmos Sci, 1993,50(6): 822-334. 
					
					 | 
			
| [8] | 
					 MU Mu, Shepherd T G, Swanson K.On nonlinear symmetric stablity and the nonlinear saturation of symmetric instability[J].J Atmos Sci, 1996,53(20):2918-2923. 
					
					 | 
			
| [9] | 
					 MU Mu, ZENG Qing-cun, Shepherd T G, et al.Nonlinear stability of multilayer quasi-geostrophic flow[J].J Fluid Mech, 1994,264:165-184. 
					
					 | 
			
| [10] | 
					 张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,,1999,20(2):133-143.Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)-the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J].IEEE AC,1999,44(2):334-336. 
					
					 |