HE Tian-lan. Bifurcations of Invariant Curves of a Difference Equation[J]. Applied Mathematics and Mechanics, 2001, 22(9): 988-996.
Citation: HE Tian-lan. Bifurcations of Invariant Curves of a Difference Equation[J]. Applied Mathematics and Mechanics, 2001, 22(9): 988-996.

Bifurcations of Invariant Curves of a Difference Equation

  • Received Date: 2000-02-22
  • Rev Recd Date: 2001-03-25
  • Publish Date: 2001-09-15
  • Bifurcation of the invariant curves of a difference equationis studied. The system defined by the difference equation is integrable, sothe study of the invariant curves of the difference system canbecome the study of topological classification of the planar phase portraits defined by a planar Hamiltonia system. By strict qualitative analysis, the classification of the invariant curves in parameter space can be obtained.
  • loading
  • [1]
    Sahadevan R. On invariants for difference equations and systems of difference equations of rational form[J]. J Math Anal Appl,1999,233:498-507.
    [2]
    Schinas C J. Invariants for difference equation and systems of difference equation of rational form[J]. J Math Anal Appl,1997,216:164-179.
    [3]
    Veselov A P. Integrable maps[J]. Russian Math Survey,1991,46(5):1-52.
    [4]
    LI Ji-bin,LIU Zheng-rong. Invariant curves of the generalized Lyness equation[J]. Int J Bifurcation and Chaos,1999,9(7):1143-1450.
    [5]
    张芷芬,等. 微分方程定性理论(现代数学丛书)[M]. 北京:科学出版社,1985.
    [6]
    李继彬,冯贝叶. 稳定性分支与混沌[M]. 昆明:云南科技出版社,1994.
    [7]
    李继彬,李存富. 非线性微分方程[M]. 成都:成都科技大学出版社,1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2424) PDF downloads(497) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return