MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
	
		
			Citation: 
			 
			 
													MA Run-nian, XU Jin, GAO Hang-shan. [0,k i ]1 m -Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528. 								 
				
			 
		 
	
 
	
		MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
	
		
			Citation: 
			 
			 
													MA Run-nian, XU Jin, GAO Hang-shan. [0,k i ]1 m -Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528. 								 
				 
		 
	
  
			
				
					
						
[0,k i ]1 m -Factorizations Orthogonal to a Subgraph 
					
					
						 
					
					
						
						 1.
	       									 
									
										Electronic Engineering Research Institute, Xidian University, Xi'an 710071, P R China;
 
							 2.
	       									 
									
										Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, P R China
 
							 
					
                        
		    		
						
							
							
							Received Date:  1999-11-05 
									 
								Rev Recd Date: 
										2000-12-13 
									 
								Publish Date: 
											2001-05-15 
									
	                     
	                  
                 
             
            
            	
                
                 
				
                    Abstract 
                        
                            Let G  be a graph,k1 ,…,k m  be positive integers.If the edges of graph G  can be decom- posed into some edge disjoint [0,k1 ]-factor F1 …,[0,k m ]-factor F m  then we can say F ={F 1 ,…,F m },is a [0,k i ]1 m -factorization of G .If H  is a subgraph with m  edges in graph G  and |E (H )∩E (F i )|=1 for all 1≤i≤m,then we can call that F  is orthogonal to H .It is proved that if G  is a[0,k 1 +… +k m -m+1]-graph,H  is a subgraph with m edges in G ,then graph G  has a [0,k i ]1 m -factorization orthogonal to H .
                    
                     
                
                 
                
               	
	                
	                     
	                 
                
                
				
	                    References 
	                    
	
		
				[1] 
				
					Bondy J A,Murty U S R.Graph Theory with Application[M].London:Macmillan,1976.
					
					 
			 
		
				[2] 
				
					Akiyama J,Kano M.Factors and factorizations of graphs-a survey[J].Journal of Graph Theory,1985,9(1):1-42.
					
					 
			 
		
				[3] 
				
					刘桂真.与星正交的(g,f)-因子分解[J].中国科学(A辑),1995,25(4):367-373.
					
					 
			 
		
				[4] 
				
					马润年.与树正交的[0,ki ] m 1 -因子分解[J].西安电子科技大学学报,1996,23(图论专辑):66-69.
					
					 
			 
		
				[5] 
				
					MA Run-nian,BAI Guo-qiang.On orthogonal[0,ki ]m 1 -factorizations of graphs[J].Acta Mathematica Scientia,1998,18(4):114-118.
					
					 
			 
		
				[6] 
				
					高安喜,马润年.图的正交因子分解[J].陕西师范大学学报(自然科学版),1999,22(2):20-22.
					
					 
			 
		
				[7] 
				
					马润年,高行山.关于图的(g,f)-因子分解[J].应用数学和力学,1997,18(4):381-386.
					
					 
			 
		
  
                
                 
				
				
                     
                
				
				
				
						 
				
                 
		
		
		
            Proportional views