Ma Junhai, Chen Yushu, Liu Zengrong. The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(11): 954-864.
Citation: Ma Junhai, Chen Yushu, Liu Zengrong. The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(11): 954-864.

The Influence of the Different Distributed Phase-Randomized on the Experimental Data Obtained in Dynamic Analysis

  • Received Date: 1997-01-20
  • Rev Recd Date: 1998-04-10
  • Publish Date: 1998-11-15
  • In this paper the influence of the differently distributed phase-randomozed to the data obtained in dynamic analysis for critical value is studied. The calculation results validate that the sifficient phase-randomized of the different distributed random numbers are less influential on the critical value. This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method.
  • loading
  • [1]
    S.Rombouts and R.Keunen,I nvestigation of nonlinear structure in multichannel EEG,Phys.Lett,A202(1995),352-358.
    [2]
    James Theiler,Spurious dimension from correlation algorit hms applied to limited time series data,Phys.Rev.,A34(1986),2427-2432.
    [3]
    马军海、陈予恕、刘曾荣,动力系统实测数据的非线性混沌特性的判定,应用数学和力学,19(6)(1998),481-489.
    [4]
    Dean Prichard,The correlation dimension of differenced data,Phys.Lett,A191(1994),245-250.
    [5]
    Matthew B.Kennel,Method to distinguish possible chaos from colored noise and to determine em-bedding parameters,Phys.Rev.Lett,A46(1992),3111-3118.
    [6]
    P.E.Rapp and A.M.Albano,Filtered noise can mimic low-dimensional chaotic attractors,Phys.Rev.,E47(1993),2289)2297.
    [7]
    Dean Prichard,Generating surrogate data for time series with several simultaneously measured vari-ables,Phys.Rev.Lett,191(1994),230-245.
    [8]
    P.E.Rapp and A.M.Albano,Phase-randomized surrogates can produce spurious identifications of non-random structure,Phys,Lett,A192(1994),27-33.
    [9]
    Henry D.I.Abarbanel,Prediction in chaotic nonlinear systems methods for timesseries with broad-band Fourier spectra,Phys,B5(1991),1347-1375.
    [10]
    M.Casdagli and Alistair Mees,Modeling chaotic motions of a string from experimental data.Phys.Rev.,E54(1992),303-328.
    [11]
    P.E.Rapp and A.M.Albano,Predicting chaotic time series,Phys.Rev.,E47(1993),2289-2297.
    [12]
    J.L uis Cabrera and F.Javier,Numerical analysis of transient behavior in the discrete random Logistic equation with delay,Phys.Lett,A197(1995),19-24.
    [13]
    Eric J.Kost elich,Problems in estimating dynamics from data,Phys.,D58(1992),138-152.
    [14]
    S.J.Schiff and T.Chang,I nformation transport in temporal systems,Phys.Rev.Lett,A(1992),378-393.
    [15]
    Peter Grassberger,Finite sample corrections to entropy and dimension estimates,Phys.Lett,A125(1988),369-373.
    [16]
    James Theiler,Some comments on the correlation dimension of noise,Phys.Lett,A155(1991),480-493.
    [17]
    J.Timonen and H.Koskinen,An improved estimator of dimension and some comments on providing confidence intervals,Geophys.Res.Lett,20(1993),1527-1536.
    [18]
    D.Prichard and C.P.Price,Reconstructing attractors from scalar time series:a comparison of singular system and redundancy criteria,Geophys.Res.,20(1993),2817-2825.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2257) PDF downloads(582) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return