| Citation: | Lu Dianchen, Tian Lixin, Liu Zengrong. Wavelet Basis Analysis in Perturbed Periodic KdV Equation[J]. Applied Mathematics and Mechanics, 1998, 19(11): 974-979. | 
	                | [1] | 
					 R.Teman,In finite -Dimensional Dynamical system in Mechanics and Physics,Appl.Math.Soc.,V.68,Springer-Verlay,Berlin,New York(1988). 
					
					 | 
			
| [2] | 
					 A.Debussche and M.Marion,On the constructure of famliies of approximate inertial manifolds,J.Diff.Egu.,100(1992),173-201. 
					
					 | 
			
| [3] | 
					 O.Goubet,Construction on approximate inertial manfolds using wavelets,SIAM,J.Math.Ana l.,9(1992),1455-1481. 
					
					 | 
			
| [4] | 
					 N.M.Ercolani,D.W.Mclaughlin and H.Roit ner,Attractors and transients for a perturbed periodic KdV equations: a nonlinear spectral analysis,J.Non li.Sci.,3(1993),477-539. 
					
					 | 
			
| [5] | 
					 S.M.Sun and M.C.Shen,Exponential small estimate for a generalized solitary wave solution to the perturbed KdV equation,Non linear Analy.,23(4)(1994),545-564. 
					
					 | 
			
| [6] | 
					 田立新、徐振源,弱阻尼 KdV 方程长期动力学行为研究,应用数学和力学,18(10)(1997),953-958. 
					
					 | 
			
| [7] | 
					 C.K.Chui,An Introduction to Wav elet,Academic Press,Inc.,USA(1992). 
					
					 | 
			
| [8] | 
					 田立新、卢殿臣、刘曾荣,弱阻尼KdV方程的小波Galerkin方法,《MMM—论文集》,上海大学出版社(1997). 
					
					 |