Lu Dianchen, Tian Lixin, Liu Zengrong. Wavelet Basis Analysis in Perturbed Periodic KdV Equation[J]. Applied Mathematics and Mechanics, 1998, 19(11): 974-979.
Citation: Lu Dianchen, Tian Lixin, Liu Zengrong. Wavelet Basis Analysis in Perturbed Periodic KdV Equation[J]. Applied Mathematics and Mechanics, 1998, 19(11): 974-979.

Wavelet Basis Analysis in Perturbed Periodic KdV Equation

  • Received Date: 1997-08-11
  • Publish Date: 1998-11-15
  • In the paper by using the spline wavelet basis to construct the approximate inertial manifold, we study the longtime behavior of pert urbed perodic KdV equation.
  • loading
  • [1]
    R.Teman,In finite -Dimensional Dynamical system in Mechanics and Physics,Appl.Math.Soc.,V.68,Springer-Verlay,Berlin,New York(1988).
    [2]
    A.Debussche and M.Marion,On the constructure of famliies of approximate inertial manifolds,J.Diff.Egu.,100(1992),173-201.
    [3]
    O.Goubet,Construction on approximate inertial manfolds using wavelets,SIAM,J.Math.Ana l.,9(1992),1455-1481.
    [4]
    N.M.Ercolani,D.W.Mclaughlin and H.Roit ner,Attractors and transients for a perturbed periodic KdV equations: a nonlinear spectral analysis,J.Non li.Sci.,3(1993),477-539.
    [5]
    S.M.Sun and M.C.Shen,Exponential small estimate for a generalized solitary wave solution to the perturbed KdV equation,Non linear Analy.,23(4)(1994),545-564.
    [6]
    田立新、徐振源,弱阻尼 KdV 方程长期动力学行为研究,应用数学和力学,18(10)(1997),953-958.
    [7]
    C.K.Chui,An Introduction to Wav elet,Academic Press,Inc.,USA(1992).
    [8]
    田立新、卢殿臣、刘曾荣,弱阻尼KdV方程的小波Galerkin方法,《MMM—论文集》,上海大学出版社(1997).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2501) PDF downloads(685) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return