Citation: | Bi Qinsheng, Chen Yushu, Wu Zhiqiang. Bifurcation in a Nonlinear Duffing System with Multi-Frequency External Periodic Forces[J]. Applied Mathematics and Mechanics, 1998, 19(2): 113-120. |
[1] |
W.H.Steeb.W.Erig and A,Kunick.Chaotic behaviour and limit cycle behaviour ofanharmonic systems with periodic external perturbations,Physics Letters A,93,6(1983),267-270.
|
[2] |
S.Sato,M.Sano and Y.Sawada,Universal scaling property in bifurcation structure ofDuffing's and generalized Duffing 's equation,Physical Review A,28,3(1983),1654-1658.
|
[3] |
Y.Ueda and N.Slamatsu,Chaotically transitional phenomena in the forced negativeresistance oscillator,Institute of Electrical Engineers Transactions on Circuits System,CAS-28,2(1981),217-223.
|
[4] |
Q.S.Lu and C.W.S.To,Principle resonance of a nonlinear system with two-frequencyparametric and self-excitations,Nonlinear Dynamics,2,6(1991),419-444.
|
[5] |
陆启韶、黄克累、非线性动力学、分岔和混沌,全国一般力学发展与展望会议,哈尔滨(1993),11-18.
|
[6] |
K.Yagasaki,M.Sakata and K.Kimura,Dynamics of weakly nonlinear system subjectedto combined parametric and external excitation,Trans.ASME,J.Appl.Mech.,57,1(1990),209-217.
|
[7] |
K.Yagasaki,Chaos in weakly nonlinear oscillator with parametric and externalresonance,Trans.ASME,J.Appl.Mech.58.1(1991),244-250.
|
[8] |
K.Yagasaki,Chaotic dynamics of a quasi-periodically forced beam,Trans.ASME.J.Appl.Mech.,59.1(1992),161-167.
|
[9] |
陈予恕、王德石,轴向激励下梁的混沌运动,非线性动力学学报,1(2)(1993),124-135.
|
[10] |
A.Y.T.Leung and T.C.Fung,Construction of chaotic regions,J.Sound Vib.,131,3(1989),445-455.
|
[11] |
Szemplinska-Stupnicka and Bajkowski.The 1/2 subharmonic resonance its transition tochaos motion in a nonlinear oscillator,IFTR Reports 4,1(1986),67-72.
|
[12] |
R.Van Dooren.On the transition from regular to chaotic behaviour in the Duffingoscillator.J.Sound Vib.,123.2(1988).327-339.
|
[13] |
T.Kapitaniak,Combined bifurcations and transition to chaos in a nonlinear oscillatorwith two external periodic forees.J.Sound Vib.121,2(1988),259-268.
|
[14] |
T.Kapitaniak.Chaotic distribution of nonlinear systems perturbed by random noise.Physical Lefters A.116,6(1986).251-254.
|
[15] |
T.Kapitaniak,A property of a stochastic response with bifurcation to nonlinear system.J.Sound Vib.,107.1(1986).177-180.
|
[16] |
V.I.Arnold,Ordinary Differential Equation.M.I.T.Press(1973),22-26,48-52.
|
[17] |
A.H.Nayfeh and D.T.Mook.Perturbation Methods.John Wiley & Sons,New York(1979),300-313.
|
[18] |
R.Raty and J.Von Boehm,Absence of inversion-symmetric limit cycles of even periodand chaotic motion of Duffing oscillator.Physics Letters A.103,6(1984),288-292.
|