Zhang Xiang. Bifurcation Problem of Critical Points for Quadratic Differential Systems[J]. Applied Mathematics and Mechanics, 1997, 18(12): 1097-1110.
Citation: Zhang Xiang. Bifurcation Problem of Critical Points for Quadratic Differential Systems[J]. Applied Mathematics and Mechanics, 1997, 18(12): 1097-1110.

Bifurcation Problem of Critical Points for Quadratic Differential Systems

  • Received Date: 1996-09-06
  • Rev Recd Date: 1997-09-08
  • Publish Date: 1997-12-15
  • In this paper foe bifurcation of critical points for the quadratic systems of type (Ⅱ) and (Ⅲ) is investigated. and an answer to the problem given in [1] is given.
  • loading
  • [1]
    Ye Yanqian.Qualitative theory of the quadratic differential systems (I) Chin,Ann.Math (to appear).
    [2]
    Ye Yanqian,Limit cycles and bifurcation phenomena for the quardatic differentialsystem (Ⅲ)m=0 having three anti-saddle (I) Chin Ann Math 17B.2 (1996),167-174.
    [3]
    A.Zegeling,Separatrix cycles and multiple limit cycles in a class of quadratic systems.J Diff.Eqs.113,2 (1994),355-380.
    [4]
    F.Dumortier,R.Roussarie and C.Rousseau,Hilbert's 16th problem for quadraticvector fields,J.Diff.Eqs. 110,1 (1994),86-133.
    [5]
    Ye Yanqian et al.Theory of limit cycles,Trans.Math.Monographs,Amer.Math Soc.66 (1986).
    [6]
    Ye Yanqian,Qualilative Theory' of Polynomial Differential Systems, Shanghai Science Technical Publisher,Shanghai (1995).
    [7]
    J.W.Reyn and R.E.Kooij,Infinite singular points of quadratic systems in the plane,Nonlinear Analysis.Theorey,Methods & Applications.24,6 (1995),895-927.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2360) PDF downloads(564) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return