| Citation: | Chen Mengcheng, Tang Renji. An Approximate Method of Response Analysis of Vibrations for Cracked Beams[J]. Applied Mathematics and Mechanics, 1997, 18(3): 203-209. | 
	                | [1] | 
					 I. G. Chondros and A. D. Dimarogonas, Identification of cracks in welded joints ofcomplex structures, J. Sound & Vib., 69 (1980), 531~538. 
					
					 | 
			
| [2] | 
					 沈亚鹏、唐照千,裂纹对悬臂板频普的影响,固体力学学报,3 (1982), 247-251 
					
					 | 
			
| [3] | 
					 P. F. Rizos, N. Aspragathos and A. D. Dimarogonas, Identification of crack locationand magnitude in a cantilever beam from the vibration mode, J. Sound & Vib., 138(190), 381~388. 
					
					 | 
			
| [4] | 
					 G. E. Nash, Bending deflections and moments in notched beam, Engng. Fract. Mech., 3(1971), 139~150. 
					
					 | 
			
| [5] | 
					 P. Gudmundson, Eigenfrequency changes of structures due to cracks, notches or othergeometrical changes, J. Mech. Phys. Solids, 30 (1982), 339~353. 
					
					 | 
			
| [6] | 
					 J. R. Rice and N. Levy, The part-through surface crack in an elastic plate, J. Appl.Mech., 39 (1972), 185~194. 
					
					 | 
			
| [7] | 
					 H. Tada, P. C. Paris and G. R. Irwin, The Stress Analysis of Crack Handbook, DelResearch Corp., Hellerton. PA (1973). 
					
					 | 
			
| [8] | 
					 T. M. Tharp, A finite element for edge-crack beam columns, Int. J. Numer. MethodsEngng 24 (1987), 1941~1950. 
					
					 |