Citation: | Wang Zhi-guo, Tang Li-min. Hamiltonian systems in Elasticity and Their Variational Principles[J]. Applied Mathematics and Mechanics, 1995, 16(2): 117-122. |
[1] |
Steele,C.R.and Y.Y.Kim,Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution,ASME J.Appl.Mech.,59,3(1992),587-595.
|
[2] |
唐立民,弹性力学的混合方程和Hamilton正则方程,计算结构力学及其应用,8(4)(1991),343-350,
|
[3] |
唐立民等,混合状态Hamiltonian元的半解析解和叠层板为计算,计算结构力学及其应用,(4)(1992),347-360,
|
[4] |
钟万勰,条形域平面弹性问题与哈密尔顿体系,大连理工大学学报,31(4)(1991),373-384.
|
[5] |
冯康、秦孟兆,Hamilton动力体系的Hamilton算法,自然科学进展—国家重点实验室通讯,试刊(2)(1990),110-120,
|
[6] |
Qin Meng-zhao,et al,,Explicit systems,difference schemes for separable Hamiltonian symplectic J,Comput,Math.,9(3)(1991),211-221,
|
[7] |
徐芝纶,《弹性力学》(第二版),上册,高等教育出版社(1982),
|
[8] |
H.戈德斯坦,《经典力学》(第二版),陈为询译,科学出版社((1986),
|
[9] |
王治国,弹性力学中哈密顿体系的研究及其应用,大连理工大学博士学位论文(1993),
|
[1] | PAN Xianyun, YU Jianghong, ZHOU Fenglin. Research on the Dual Reciprocity Boundary Element Method for Non-Homogeneous Elasticity Problems[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1004-1015. doi: 10.21656/1000-0887.420208 |
[2] | WANG Jialin, ZHANG Junbo, HE Lin, CHEN Zhuo. A Variational Principle and Applications for a Class of Specified Stress Problems[J]. Applied Mathematics and Mechanics, 2021, 42(4): 331-341. doi: 10.21656/1000-0887.410173 |
[3] | ZHANG Guo-qing, YU Jian-xing. Study of the Equivalent Theorem of Generalized Variational Principles in Elasticity[J]. Applied Mathematics and Mechanics, 2004, 25(3): 313-322. |
[4] | LUO Jian-hui, LIU Guang-dong, SHANG Shou-ping. Research on a Systematic Methodology for Theory of Elasticity[J]. Applied Mathematics and Mechanics, 2003, 24(7): 755-763. |
[5] | QI Zhao-hui, Alexander P. Seyranian. On the Stability Boundary of Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 173-178. |
[6] | Song Yanqi, Chen Zhida. Variational Principles of Asymmetric Elasticity Theory of Finite Deformation[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1115-1120. |
[7] | Shi Zhifei, Huang Shuping, Zhang Zimao. Variational Principles of Fluid Full-Filled Elastic Solids[J]. Applied Mathematics and Mechanics, 1999, 20(3): 249-255. |
[8] | Zhou Shenjie, Cao Zhiyuan, Sun Shuxun. Boundary Integral Equations of Unique Solutions in Elasticity[J]. Applied Mathematics and Mechanics, 1999, 20(10): 1051-1056. |
[9] | Shen Min. Variational Principles in Hydrodynamics of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 1998, 19(10): 891-896. |
[10] | Huang Minfeng. Coordinates of Principal Stresses for Elastic Plane Problem[J]. Applied Mathematics and Mechanics, 1997, 18(2): 147-152. |
[11] | Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66. |
[12] | Luo Shaokai. Relativistic Variation Principles and Equation of Motionfor Variable Mass Controllable Mechanical Systems[J]. Applied Mathematics and Mechanics, 1996, 17(7): 645-653. |
[13] | Shen Min, Sun Qi-ren. Variational Principle and Generalized Variational Principle in Hydrodynamics of a Class of Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 1995, 16(4): 345-351. |
[14] | Wo Guo-wei. An Elasticity Solution of a Nonhomogeneous Half-Plane Problem[J]. Applied Mathematics and Mechanics, 1994, 15(10): 935-942. |
[15] | Zhong Wan-xie. Plane Elasticity Sectorial Donain and the Hamiltonian System[J]. Applied Mathematics and Mechanics, 1994, 15(12): 1057-1066. |
[16] | Liang Li-fu, Shi Zhi-fei. On the Inverse Problem in Calculus of Variations[J]. Applied Mathematics and Mechanics, 1994, 15(9): 775-788. |
[17] | Wang Quan, Wang Da-jun. Singularity under a Concentrated Force in Elasticity[J]. Applied Mathematics and Mechanics, 1993, 14(8): 679-677. |
[18] | Liu Feng-li, Mei Feng-xiang. Formulation and Solution for Inverse Problem of Nonholonomic Dynamics[J]. Applied Mathematics and Mechanics, 1993, 14(4): 309-314. |
[19] | Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics[J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810. |
[20] | Jin Fu-sheng. Variational Principles for Hydrodynamic Impact Problems[J]. Applied Mathematics and Mechanics, 1992, 13(6): 543-552. |