| Citation: | Huang Xin, Liu Zeng-rong. Numerical Studies for a Model Describing Complexity[J]. Applied Mathematics and Mechanics, 1994, 15(8): 729-732. | 
	                | [1] | 
					 Wolfram.S.,Computation theory of cellular automata,Comrnun.Math.Phys.,96(1984),15-57. 
					
					 | 
			
| [2] | 
					 Lempel,A.and J.Ziv.,On the complexity of finite sequences,IEEE Trans.Inform.Theory,22,1(1976),75-81. 
					
					 | 
			
| [3] | 
					 D'Alessandro,G.and A.Peleti,Hierachicai approach to complexity with applications to dynamical systems,Phys.Rev.Lett.,64,14(1990),1609-1612. 
					
					 | 
			
| [4] | 
					 Grassberger,P.,Toward a quantitative theory of self-generated complexity,Inter.J.Theor.Phys.,25,9(1986),907-939. 
					
					 | 
			
| [5] | 
					 Schuster,H.G.,Information content of chaotic signals,Physica Soripta,40(1989),367-371. 
					
					 | 
			
| [6] | 
					 Crutchfield,J.P.and K.Young,Inferring statistical complexity,Phys.Rev.Lett,63,2(1989),105-108. 
					
					 | 
			
| [7] | 
					 Auerbach,D.and I.Procaceia,Grammatical complexity of strange sets,Phys.Rev.,A.41,12(1990),6602-6614. 
					
					 | 
			
| [8] | 
					 Urias,J.,An algebraic measure of complexity,Physica,D 47(1991),498-508. 
					
					 | 
			
| [9] | 
					 Hao Bai-lin,Symbolic dynamics and characterization of complexity,Physica,D.,51(1991),161-176. 
					
					 | 
			
| [10] | 
					 Liu Zeng-rong,Xu Zhen-yuan and Xie Hui-min,The global attractor and inertial manifold in infinite-dimensional dynamical systems,Advances in Mechanics,21,4(1991),421-429.(in Chinese). 
					
					 | 
			
| [11] | 
					 刘曾荣、徐振源、谢惠民,无穷维动力系统中的惯性流形和吸引子.力学进展,21(4)(1991),421-429. 
					
					 | 
			
| [12] | 
					 刘曾荣、徐振源,从具体例子看惯比流形溉念的推广.力学学报.24(4)(1992),438-445. 
					
					 | 
			
| [13] | 
					 刘曾荣、徐振源.Sine-Gordon方程为广义惯性流形和动力学行为,《全国一般力学和现代数学方法学术会文集》,科学出版社(1992),18-25. 
					
					 |