Luo Shao-kai. Integral Theory for the Dynamics of Nonlinear Nonholonomic System in Noninertial Reference Frames[J]. Applied Mathematics and Mechanics, 1993, 14(10): 861-871.
Citation: Luo Shao-kai. Integral Theory for the Dynamics of Nonlinear Nonholonomic System in Noninertial Reference Frames[J]. Applied Mathematics and Mechanics, 1993, 14(10): 861-871.

Integral Theory for the Dynamics of Nonlinear Nonholonomic System in Noninertial Reference Frames

  • Received Date: 1992-09-09
  • Publish Date: 1993-10-15
  • This paper establishes the integral theory for the dynamics of nonlinear nonholonomic system in noninertial reference frame. Firstly, based on the Routh equation of the relative motion of nonlinear nonholonomic system gives the first integral of the system. Secondly, by using cyclic integral or energy integral reduces the order of the equation and obtains generalized Routh equation and Whittaker equation respectively. Thirdly, derives canonical equation and variation equation and by using the first integral constructs integral invariant. And then, establishes the basic integral variants and the integral invariant of Poincare-Cartan type. Finally, we give a series of deductions.
  • loading
  • [1]
    Луръе А.И.,Аналцмцчесыая Механцка,Ф.М.(1961),426-436,288-289.
    [2]
    梅凤翔,《非完整系统力学基础》,北京工业学院出版社(1985), 439-452.
    [3]
    邱荣,Mac-Millan方程的推广,应用数学和力学,11(5) (1990), 463-466.
    [4]
    岁绍凯,非惯性系动力学的Hamilton方法,黄淮学刊,6(1) (1989), 20-25.
    [5]
    罗绍凯,非完整非有势系统相讨于非贷比系的广义Noether定理,应用数学和力学,12(9)(1991),863-870
    [6]
    Routh. E. J.,A Treatise on the Stability of Motion, Macmillima, London(1877).
    [7]
    刘端. 非完整系统的Routh方法,科学通报,33(22) (1988), 1698-1701.
    [8]
    Whittaker,E, T.,A Treatise on the Stalyfical Dptnamics of Particles and Rigid Bodies with an Introduction to the Problem of Three Bodies, Cambridge(1904).
    [9]
    梅风翔,Whiitaker方程对非lG整力学系统的推广,应用数学和力学,5(1)(1984),81-88.
    [10]
    Whittaker, E.T,A Treatise oaa the Analytical Mechanics and Rigid Bodies,with Edition, Cambridge(1952),269-271.
    [11]
    梅凤翔,非完整系统的第一积分与积分不变量,科学通报,35(l.1) (1990), 815-818.
    [12]
    Нооселов В.С.Варцачцонные Мемобы з Механцке,ЛГУ(1966).49-51.
    [13]
    刘端,关于完整非保守系统的毖本积分变量关系,力学学报,23(5) (1991), 617-625.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2193) PDF downloads(657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return