| Citation: | Sun Xiao-di. A Second Order Uniform Difference Scheme for a Singularly Perturbed Turning Point Problem[J]. Applied Mathematics and Mechanics, 1992, 13(2): 129-133. | 
	                | [1] | 
					 Berger,A.E.,H.Han and R.B.Kellogg,A priori estimates and analysis of a numerical method for a turning point problem,Math.Comp.,42(1984),465-492. 
					
					 | 
			
| [2] | 
					 Emeljanov,K.V.,A difference scheme for the equation eu"+xa(x)u'-b(x)u=f(x),Inst.Math.Mech.,Ural Science Lenter Acad.USSR,21(1976),5-18.(in Russian). 
					
					 | 
			
| [3] | 
					 Farrell,P.A.,Sufficient conditions for the uniform convergence of a difference scheme for singularly perturbed turning problem,SIAM J.Numer.Anal.,25(188),618-643. 
					
					 | 
			
| [4] | 
					 Liseikin,V.D.,On the numerical solution of equations with interior and exterior boundary layers on a non-uniform mesh,Proc.BAIL Ⅲ Conference,J.J.H.Miller,Ed.,Boole Prees,Dublin(1984),68-80. 
					
					 | 
			
| [5] | 
					 Veldhuizen,M.V.,High order schemes of positive type for singular perturbation problems,Numerical Analysis of Singular Perturbation Problems,P.W.Hemker and J.J.H.Miller(Ed.),London Academic Pr.(1979),361-381. 
					
					 | 
			
| [6] | 
					 Vulanovic,R.,A second order uniform numerical method for a turning point problem,Zb.Rad.Prir,Mat.Univ.Novom.Sadu.Ser.Mat.,18,1(1988),17-30. 
					
					 |