Lin Zong-chi. Singular Perturbation of the Fourth Order Elliptic Equation When the Limit Equation Is Elliptic-Parabolic[J]. Applied Mathematics and Mechanics, 1991, 12(1): 69-76.
Citation: Lin Zong-chi. Singular Perturbation of the Fourth Order Elliptic Equation When the Limit Equation Is Elliptic-Parabolic[J]. Applied Mathematics and Mechanics, 1991, 12(1): 69-76.

Singular Perturbation of the Fourth Order Elliptic Equation When the Limit Equation Is Elliptic-Parabolic

  • Received Date: 1990-02-15
  • Publish Date: 1991-01-15
  • In this paper we cosider the singular perturbation of the fourth order elliptic equation-ε2Δ2u+ym2u/∂y2+∂2u/∂x2+a(x,y)∂u/∂y+b(x,y)∂u/∂x+c(x,y)=0 when the limit equationis elliptic-parabolic, where ε is a positive parameter, Δ is a positive real number, A is Laplacian operator, a,b,c are sufficiently smooth. Under appropriate condition we derive the sufficient condition of solvability and prove the existence of solution and give a uniformly valid asymptotic solution of arbitrary order.
  • loading
  • [1]
    林宗池,苏联科学院报告,157, 3 (1964), 522-525.
    [2]
    林宗池,《第五届边界层和内层计算和渐近方法国际会议记录》,英国爱尔兰,Boole出版社(1988),212-217.
    [3]
    de Jager E, M.,Lecture Notes in Math,280(1972), 73.
    [4]
    Grasman,J, and B.J.Matkowsky, SIAM.J.Appl.Math,32(1977), 588.
    [5]
    高汝熹,复旦学报(自然科学版),20, 3 (1981), 296-305; 21, 4 (1982), 367-378.
    [6]
    И.Г.彼得罗夫斯基著,《偏微分方程讲义》,苏联国家技术理论书籍出版社(1956).
    [7]
    Келдыш М.В.,苏联科学院报告,77, 2 (1961), 181-183.
    [8]
    Олейник,苏联科学院报告,77, 6, (1956), 885-888.
    [9]
    Вишик М.И.,苏联科学院报告,91 (1953), 225-229, 93 (1953), 9-12;苏联数学进展,9, 1 (59), (1954) 138-143;数学汇刊,35, (77), (1954), 313-368.
    [10]
    江福汝,关于边界层方法,应用数学和力学,2, 5 (1981), 461-473.
    [11]
    Nayfeh, A, H.,《摄动法引论》,New York (1981).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2105) PDF downloads(511) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return