Chen Da-peng, Pan Yi-su. A Potential-Hybrid/Mixed Finite Element Scheme for Analysis of Plates and Cylindrical Shells[J]. Applied Mathematics and Mechanics, 1990, 11(9): 761-770.
Citation: Chen Da-peng, Pan Yi-su. A Potential-Hybrid/Mixed Finite Element Scheme for Analysis of Plates and Cylindrical Shells[J]. Applied Mathematics and Mechanics, 1990, 11(9): 761-770.

A Potential-Hybrid/Mixed Finite Element Scheme for Analysis of Plates and Cylindrical Shells

  • Received Date: 1989-06-29
  • Publish Date: 1990-09-15
  • Based on the potential-hybrid/mixed finite element scheme, 4-node quadrilateral plate-bending elements MP4, MP4a and cylindrical shell element MCS4 are derived with, the inclusion of splitting rotations. All these elements demonstrate favorable convergence behavior over the existing counterparts, free from spurious kinematic modes and do not exhibit locking phenomenon in thin platef shell limit. Inter-connections between the existing modified variational functionals for the use of formulating C0-and C1-continuous elements are also indicated. Important particularizations of the present scheme include Prathop's consistent field formulation, the RIT/SRIT-compatible displacement model and so on.
  • loading
  • [1]
    Pian,T.H.H.,Derivation of element stiffness matrices by assumed stress distributions,AIAA J.,2(1964),1333-1336.
    [2]
    Pian,T.H.H.,Element stiffness-matrices for boundary compatibility and for prescribed boundary stresses,Proc.Conf.Matrix Methods in Structural Mechanics(1965).
    [3]
    Zienkiewicz,O.C.,et al.,Reduced integration technique in general analysis of plates and shells,Int.J.Num.Eng.,3(1971),274-290.
    [4]
    Belytschko,T.,et al.,A Consistant control of spurious singular models in the 9-node Lagrange element for the Laplace and Mindlin plate equations,Comp.Meth.Appl.Mech Eng.,44(1984),269-295.
    [5]
    Belyschko,T.,et al.,Hourglass control in linear and nonlinear problems,Comp.Meth.Appl.Mech.Eng.,43(1984),251-276.
    [6]
    Spilker,R.L.,et al.,The hybrid stress model for thin plates,Int.J.Num.Meth.Eng.,15(1980)1239-1260.
    [7]
    Spilker,R.L.,et al.,A serendipity cubic displacement hybrid stress element for thin and moderately thick plates,Int.J.Num.Meth.Eng.,15(1980),1261-1278.
    [8]
    Lee,S.W.and T.H.H.Pian,Improvement of plate and shell finite element by mixed formulations,AIAA J.,16(1978),29-34.
    [9]
    Malkus,D.S.,et al.Mixed finite element methods-reduced and selective integration techniques:a unification,Comp.Meth.Appl.Mech.Eng.,15(1978),63-81.
    [10]
    Simodaira,H.,Equivalence between mixed models and displacement models using reduced integration,Int.J.Num.Meth.Eng.,21(1985),89-104.
    [11]
    Lee,S.W.,et al.,Experience with finite element modelling of thin plate bending,Computers and Structures,19(1984),747-755.
    [12]
    Lee,S.W.,and J.C.Zhang,A six-node finite element for plate bending,Int.J.Nume.Meth.Eng.,21(1985),131-143.
    [13]
    Lee,S.W.and S.C.Wang,Mixed formulation finite elements for Mindlin theory plate bending,Int.J.Num.Meth.Eng.,18(1982),1297-1311.
    [14]
    Pian,T.H.H.and D.P.Chen,Alternative ways for formulation of hybrid stress element,Int.J.Num.Meth.Eng.,18(1983),1679-1684.
    [15]
    Pian,T.H.H.,et al.,A new formulation of hybrid/mixed finite elements,Computers and Structures,16(1983),81-87.
    [16]
    陈大鹏、裴亚玲C1类薄板杂交应力法与杂交/混合法列式,FECAL-TR-87020,西南交通大学(1987).
    [17]
    Prathap,G.,et al.,An optimally integrated 4-node quadrilateral plate bending element,Int.J.Num.Meth.Eng.,19(1983),831-840.
    [18]
    Prathap,G.,A continuous four-noded cylindical shell element,Computers and Structures,21(1985).995-999.
    [19]
    Bogner,F.K.,et al.,A cylindrical shell discrete elements,AIAA J.,5(1967)745-750.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1934) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return