Jia Nai-wen. Momental Solution of Spherical Shells with Variably Nonlinear Section under Normal Pressure[J]. Applied Mathematics and Mechanics, 1990, 11(9): 837-842.
Citation:
Jia Nai-wen. Momental Solution of Spherical Shells with Variably Nonlinear Section under Normal Pressure[J]. Applied Mathematics and Mechanics, 1990, 11(9): 837-842.
Jia Nai-wen. Momental Solution of Spherical Shells with Variably Nonlinear Section under Normal Pressure[J]. Applied Mathematics and Mechanics, 1990, 11(9): 837-842.
Citation:
Jia Nai-wen. Momental Solution of Spherical Shells with Variably Nonlinear Section under Normal Pressure[J]. Applied Mathematics and Mechanics, 1990, 11(9): 837-842.
Momental Solution of Spherical Shells with Variably Nonlinear Section under Normal Pressure
Received Date: 1989-01-05
Publish Date:
1990-09-15
Abstract
In this paper, spherical shell with variably nonlinear section that is widely used in eingineering and its equation of the section, δ=δ0 (1+βφ)2 analysed to momental problem. The Euler solutions of internal forces are obtained under normal pressure.
References
[1]
杨耀乾,《簿壳理论),中国铁道出版社(1981) 181-185,
[2]
贾乃文,球形扁壳超临界变形的步进求和计算,应用数学和力学, 8,,2(1982)
[3]
贾乃文,变厚度球形结构物设计,特种结构,26 (1989).
[4]
徐芝纶,《弹性力学》下册,人民教育出版社(1980), 299,
[5]
王慎行,变壁厚轴对称球壳,应用数学和力学,9,2 (1988).(1982).
Relative Articles
[1] ZHAO Li, LI Chen. Thermal Stress Constitutive Equations of Non-Linear Isotropic Elastic Material [J]. Applied Mathematics and Mechanics, 2013, 34(2): 183-189. doi: 10.3879/j.issn.1000-0887.2013.02.008
[2] LUO Li-ping, YU Yuan-hong, ZENG Yun-hui. New Criteria for Oscillation of Third Order Nonlinear Delay Differential Equations [J]. Applied Mathematics and Mechanics, 2013, 34(9): 941-947. doi: 10.3879/j.issn.1000-0887.2013.09.007
[3] A. M. Zenkour. Stresses in a Rotating Heterogeneous Viscoelastic Composite Cylinder With Variable Thickness [J]. Applied Mathematics and Mechanics, 2011, 32(4): 483-496. doi: 10.3879/j.issn.1000-0887.2011.04.010
[4] ZHANG Yi-min, ZHU Li-sha, WANG Xin-gang. Advanced Method to Estimate the Reliability-Based Sensitivity of Mechanical Components With Strongly Nonlinear Performance Function [J]. Applied Mathematics and Mechanics, 2010, 31(10): 1256-1266. doi: 10.3879/j.issn.1000-0887.2010.10.013
[5] MO Jia-qi. Singular Perturbation for the Weakly Nonlinear Reaction Diffusion Equation With Boundary Perturbation [J]. Applied Mathematics and Mechanics, 2008, 29(8): 1003-1008.
[6] ZHANG Dian-xin, TAO Jian-hua. A Boussinesq Model With Improved Nonlinearity and Dispersion [J]. Applied Mathematics and Mechanics, 2008, 29(7): 813-824.
[7] XU Ye-peng, ZHOU Ding, Y. K. Cheung. Elasticity Solution of Clamped-Simply Supported Beams With Variable Thickness [J]. Applied Mathematics and Mechanics, 2008, 29(3): 253-262.
[8] WANG Xin-zhi, ZHAO Yong-gang, JU Xu, ZHAO Yan-ying, YE Kai-yuan. Unsymmetrical Nonlinear Bending Problem of Circular Thin Plate With Variable Thickness [J]. Applied Mathematics and Mechanics, 2005, 26(4): 386-393.
[9] WANG Xin-zhi, HAN Ming-jun, ZHAO Yong-gang, YEH Kai-yuan. Nonlinear Natural Frequency of Shallow Conical Shiells With Variable Thickness [J]. Applied Mathematics and Mechanics, 2005, 26(3): 253-258.
[10] LIU An-ping, HE Meng-xing. Oscillatory Properties of the Solutions of Nonlinear Delay Hyperbolic Differential Equations of Neutral Type [J]. Applied Mathematics and Mechanics, 2002, 23(6): 604-610.
[11] Pakize Temtek, Aydn Tiryaki. Nonoscillation Results for a Class of Third Order Nonlinear Differential Equations [J]. Applied Mathematics and Mechanics, 2002, 23(10): 1041-1046.
[12] HE Yin-nian, LI Kai-tai. Nonlinear Galerkin Method for the Exterior Nonstationary Navier-Stokes Equations [J]. Applied Mathematics and Mechanics, 2002, 23(11): 1141-1149.
[13] LIU Yu-Ji. Global Attractivity for a Class of Nonlinear Delay Difference Equations [J]. Applied Mathematics and Mechanics, 2002, 23(3): 321-330.
[14] Yang Zuodong. Existence of Positive Solutions for a Class of Singular Two Point Boundary Value Problems of Second Order Nonliear Equation [J]. Applied Mathematics and Mechanics, 1996, 17(5): 445-454.
[15] Yuan Yiwu. The Similar soluions of Nonlinear HeatConductlon Equation [J]. Applied Mathematics and Mechanics, 1995, 16(9): 843-850.
[16] Gao Zhenghong. Unconditional Stable Solutions of the Euler Equations for Two and Three-D Wings in Arhitrary Motion [J]. Applied Mathematics and Mechanics, 1995, 16(12): 1123-1134.
[17] Jin Ming-zhong. Oscillation Theorems of Higher Order Nonlinear Delay Differential Equations [J]. Applied Mathematics and Mechanics, 1994, 15(9): 823-830.
[18] Niu Zhong-rong. Nonlinear Bending of the Shallow Spherical Shells with Variable Thickness under Axisymmetricai Leads [J]. Applied Mathematics and Mechanics, 1993, 14(11): 971-978.
[19] Yeh Kai-yuan, Tong Xiao-hua, Ji Zhen-yi. General Analytic Solution of Dynamic Response of Beams with Nonhomogeneity and Variable Cross Section [J]. Applied Mathematics and Mechanics, 1992, 13(9): 753-764.
[20] Zhou Qing-qing. Navier Solution for the Elastic Equilibrium Problems of Anisotropic Skew Thin Plate with Variable Thickness in Nonlinear Theories [J]. Applied Mathematics and Mechanics, 1991, 12(4): 349-358.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 19.2 % FULLTEXT : 19.2 % META : 79.8 % META : 79.8 % PDF : 1.0 % PDF : 1.0 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 4.6 % 其他 : 4.6 % China : 0.5 % China : 0.5 % 上海 : 0.8 % 上海 : 0.8 % 北京 : 1.2 % 北京 : 1.2 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.2 % 台州 : 0.2 % 张家口 : 2.5 % 张家口 : 2.5 % 昆明 : 0.1 % 昆明 : 0.1 % 杭州 : 0.5 % 杭州 : 0.5 % 洛杉矶 : 0.3 % 洛杉矶 : 0.3 % 深圳 : 0.3 % 深圳 : 0.3 % 湖州 : 0.4 % 湖州 : 0.4 % 石家庄 : 0.3 % 石家庄 : 0.3 % 芒廷维尤 : 7.9 % 芒廷维尤 : 7.9 % 苏州 : 0.1 % 苏州 : 0.1 % 衢州 : 0.3 % 衢州 : 0.3 % 西宁 : 79.1 % 西宁 : 79.1 % 西安 : 0.1 % 西安 : 0.1 % 重庆 : 0.3 % 重庆 : 0.3 % 其他 China 上海 北京 南宁 台州 张家口 昆明 杭州 洛杉矶 深圳 湖州 石家庄 芒廷维尤 苏州 衢州 西宁 西安 重庆