Xu Zhen-yuan, Li Li. Meinikov Function and Poincaré Map[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1055-1063.
Citation: Xu Zhen-yuan, Li Li. Meinikov Function and Poincaré Map[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1055-1063.

Meinikov Function and Poincaré Map

  • Received Date: 1987-07-07
  • Publish Date: 1988-12-15
  • In this paper we give the relationship between Melnikov function and Poincare map, and a new proof for Melnikov's method. The advantage of our paper is to give a more explicit solution and to make Melnikov function for the subharmonics bifurcation and Melnikoy function which the stable manifolds and unstable manifolds intersect transversely into a formula.
  • loading
  • [1]
    Li Li, The periodic solution of a class of strongly nonlinear system, Proceedings of International Conference on Nonlinear Mechanics, Science Press (1985).
    [2]
    徐兆,非线性力学中一种新的渐近方法,力学学报,17(1985).
    [3]
    Melnikov, V. K., On the stability of the center for time periodic perturbations, Trais Moscow Math. Soc., 12 (1963), 1-57.
    [4]
    Chow, S. N, J. K.Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff. Eqs., 37 (1980), 357-373.
    [5]
    Holmes, P. J, Averaging and chaotic motions in forced oscillations, SIAM J. Appl. Math., 38 (1980).
    [6]
    刘曾荣、姚伟国、朱照宣,软弹簧系统在周期扰动下通向混沌的道路,应用数学和力学,7,2(1986), 103-108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2143) PDF downloads(427) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return