Citation: | Xu Jun-tao. Singular Perturbation Solution of Boundary-Value Problem for a Second-Order Differential-Difference Equation[J]. Applied Mathematics and Mechanics, 1988, 9(7): 629-640. |
[1] |
Lange, C.G. and R.M. Miura, Singular perturbation analysis of boundary value problem for differential-difference equation, SIMA J. Appl. Math., 42,3 (1982), 502-531.
|
[2] |
Nayfeh, A.H., Perturbation methods. Ist ed. New York, John Wiley and Sons (1973).
|
[3] |
江福汝,关于边界层方法,应用数学和力学,2, 5 (1981), 461-474.
|
[4] |
江福汝,关于椭圆型方程的奇摄动,复旦大学学报(自然科学版),2(1978),29-37.
|
[5] |
Murray, H.P. and F.W. Hams. Maximum Principles in Differential Equation, Prentice-Hall, Englewood Cliffs, New Jersey, (1967).
|
[6] |
Chang, K.W. and F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Application, lst ed. New York, Springer-Verlag (1984).
|
[7] |
O'Malley, R.E., Introduction to Singular Perturbations. lst ed., New York, Academic Press (1974).
|
[8] |
Xu Jun-tao. Singular perturbation of boundary-value problem for a second-order differentialdiference equation. Ann. of Diff. Eqs., 2, 1 (1986), 47-64.
|