Amjad Pervez, Asghar Qadir. Some Comments on the Original Kaluza-Klein Theory[J]. Applied Mathematics and Mechanics, 1987, 8(9): 779-780.
Citation:
Amjad Pervez, Asghar Qadir. Some Comments on the Original Kaluza-Klein Theory[J]. Applied Mathematics and Mechanics, 1987, 8(9): 779-780.
Amjad Pervez, Asghar Qadir. Some Comments on the Original Kaluza-Klein Theory[J]. Applied Mathematics and Mechanics, 1987, 8(9): 779-780.
Citation:
Amjad Pervez, Asghar Qadir. Some Comments on the Original Kaluza-Klein Theory[J]. Applied Mathematics and Mechanics, 1987, 8(9): 779-780.
Some Comments on the Original Kaluza-Klein Theory
Received Date: 1986-10-30
Publish Date:
1987-09-15
Abstract
In this note the basis of the Kaluza-Klein theory is examined critically and it is pointed out that the five-dimensional version can't work in the way that was originally intended. The reason why the problem was not noted originally is elucidated.
References
Relative Articles
[1] LI Yuanfei. Convergence Results on Heat Source for 2D Viscous Primitive Equations of Ocean Dynamics [J]. Applied Mathematics and Mechanics, 2020, 41(3): 339-352. doi: 10.21656/1000-0887.400176
[2] ZHAO Dan, SUN Xiangkai. Some Robust Approximate Optimality Conditions for Nonconvex Multi-Objective Optimization Problems [J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700. doi: 10.21656/1000-0887.390289
[3] ZHAO Yan-ping, LI Lin, JIN Ming. Some Stable and Unstable Critical States of a Compression Rod With a Flexible Support [J]. Applied Mathematics and Mechanics, 2017, 38(8): 877-887. doi: 10.21656/1000-0887.370299
[4] CHEN Yi-zhou. Comments on “General Solutions of Plane Problem for Power Function Curved Cracks” [J]. Applied Mathematics and Mechanics, 2012, 33(8): 1023-1024. doi: 10.3879/j.issn.1000-0887.2012.08.010
[5] HAO Yan. Some Results on Variational Inclusion Problems and Fixed Point Problems With Applications [J]. Applied Mathematics and Mechanics, 2009, 30(12): 1493-1500. doi: 10.3879/j.issn.1000-0887.2009.12.010
[6] SHEN Ya-jun, YUAN Jun. Several Properties of New Ellipsoids [J]. Applied Mathematics and Mechanics, 2008, 29(7): 877-882.
[7] LIU Ying-fan, CHEN Xiao-hong. Some Results on Continuous Type Conditional Input-Output Equation——Fixed Point and Surjectivity Methods [J]. Applied Mathematics and Mechanics, 2004, 25(3): 323-330.
[8] CHEN Yong, ZHENG Yu, ZHANG Hong-qing. The Hamiltonian Equations in Some Mathematics and Physics Problems [J]. Applied Mathematics and Mechanics, 2003, 24(1): 19-24.
[9] Nian Xianhong. Robust Stability for a Type of Uncertain Time-Delay Systems [J]. Applied Mathematics and Mechanics, 2000, 21(4): 431-436.
[10] He Linghui, Cheng Zhenqiang, Liu Renhuai. Some Exact Results Concerning Thermoelastic Properties of Hollow Sphere Composites [J]. Applied Mathematics and Mechanics, 1998, 19(5): 399-406.
[11] Liao Fucheng, Egami Tadashi, Tsuchiya Takeshi. A General Frequency Dependent Digital optimal Preview Servo System [J]. Applied Mathematics and Mechanics, 1996, 17(4): 307-318.
[12] Liao Fucheng, Egami Tadashi, Tsuchiya Takeshi, . On General Type of Digital optimal Preview Servo System [J]. Applied Mathematics and Mechanics, 1996, 17(5): 405-417.
[13] Wang Yong, Yu Nian-cai. On Robust Stability of a Class of Polynomial Families [J]. Applied Mathematics and Mechanics, 1993, 14(12): 1041-1048.
[14] Dong Qiu-quan. A New Method for Calculating Vehicle Attitude Using Cayley-Klein Parameters [J]. Applied Mathematics and Mechanics, 1993, 14(11): 979-984.
[15] Chen Yu-shu, Zhan Kai-jun. Some Extended Results of “Subharmonic Resonance Bifurcation Theory of Nonlinear Mathieu Equation” [J]. Applied Mathematics and Mechanics, 1990, 11(3): 239-245.
[16] Li Zhong, Huang Lin. Some Problems of Second Method of Lyapunov in Discrete Systems [J]. Applied Mathematics and Mechanics, 1988, 9(12): 1109-1115.
[17] Xu Zhen-yuan, Liu Zeng-rong. Some Phenomena for Weak Spring Duffing Equation in Subharmonic and Ultrasubharmonic Region [J]. Applied Mathematics and Mechanics, 1987, 8(5): 413-418.
[18] Lu Jian-ke. Some Lemmas on Doubly Quasi-Periodic Analytic Functions in Multiplication [J]. Applied Mathematics and Mechanics, 1986, 7(7): 583-587.
[19] Liu Cheng-qun. Note on the Critical Variational State in Elasticity Theory [J]. Applied Mathematics and Mechanics, 1984, 5(6): 895-901.
[20] O. C. Zienkiewicz. Generalized Plasticity and Some Models for Geomechanics [J]. Applied Mathematics and Mechanics, 1982, 3(3): 267-280.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.8 % FULLTEXT : 14.8 % META : 84.2 % META : 84.2 % PDF : 0.9 % PDF : 0.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 4.9 % 其他 : 4.9 % 其他 : 0.2 % 其他 : 0.2 % China : 0.4 % China : 0.4 % Singapore : 0.1 % Singapore : 0.1 % 上海 : 0.7 % 上海 : 0.7 % 临沂 : 0.1 % 临沂 : 0.1 % 亚特兰大 : 0.1 % 亚特兰大 : 0.1 % 亳州 : 0.1 % 亳州 : 0.1 % 六安 : 0.1 % 六安 : 0.1 % 兰州 : 0.1 % 兰州 : 0.1 % 北京 : 1.5 % 北京 : 1.5 % 南宁 : 0.1 % 南宁 : 0.1 % 南通 : 0.2 % 南通 : 0.2 % 周口 : 0.1 % 周口 : 0.1 % 哈尔滨 : 0.1 % 哈尔滨 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 宣城 : 0.1 % 宣城 : 0.1 % 广州 : 0.2 % 广州 : 0.2 % 张家口 : 2.1 % 张家口 : 2.1 % 昆明 : 0.2 % 昆明 : 0.2 % 杭州 : 0.2 % 杭州 : 0.2 % 梧州 : 0.1 % 梧州 : 0.1 % 河源 : 0.1 % 河源 : 0.1 % 泰安 : 0.1 % 泰安 : 0.1 % 泰州 : 0.1 % 泰州 : 0.1 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 深圳 : 0.2 % 深圳 : 0.2 % 漯河 : 0.1 % 漯河 : 0.1 % 眉山 : 0.1 % 眉山 : 0.1 % 石家庄 : 0.5 % 石家庄 : 0.5 % 福州 : 0.2 % 福州 : 0.2 % 芒廷维尤 : 17.9 % 芒廷维尤 : 17.9 % 苏州 : 0.1 % 苏州 : 0.1 % 衢州 : 0.1 % 衢州 : 0.1 % 西宁 : 68.3 % 西宁 : 68.3 % 西安 : 0.2 % 西安 : 0.2 % 长春 : 0.2 % 长春 : 0.2 % 长沙 : 0.3 % 长沙 : 0.3 % 阳泉 : 0.2 % 阳泉 : 0.2 % 其他 其他 China Singapore 上海 临沂 亚特兰大 亳州 六安 兰州 北京 南宁 南通 周口 哈尔滨 哥伦布 宣城 广州 张家口 昆明 杭州 梧州 河源 泰安 泰州 洛杉矶 深圳 漯河 眉山 石家庄 福州 芒廷维尤 苏州 衢州 西宁 西安 长春 长沙 阳泉