| Citation: | Liu Zheng-rong. Discontinuous and Impulsive Excitation[J]. Applied Mathematics and Mechanics, 1987, 8(1): 31-36. | 
	                | [1] | 
					 Pan,H.H.and R.M.Hohenstein,A method of solution for an ordinary differential equation containing symbolic functions,Quart.Appl.Math.,39,(1981),131-137. 
					
					 | 
			
| [2] | 
					 Hsu,C.S.,On nonlinear parametric excitation problem,J Appl.Mech.,39,(1972),551-559. 
					
					 | 
			
| [3] | 
					 Hsu,C.S.,Impulsive parametric excitation,theory,Adv.Appl.Mech.,17(1977),245-301. 
					
					 | 
			
| [4] | 
					 Hsu,C.S.,Nonlinear behaviour of multibody systems under impulsive parametric excitation,Dynamics of Multibody System,Magnus K.Springer,Berlin(1977),63-74. 
					
					 | 
			
| [5] | 
					 Hsu,C.S.,W.H.Cheng and H.C.Yee,Steady-state response of a non-linear system under impulsive periodic parametric excitation,J.Sound.Vib.,50(1977),95-116. 
					
					 | 
			
| [6] | 
					 尤秉礼,《常微分方程补充教程》,人民教育出版社(1981). 
					
					 | 
			
| [7] | 
					 盖尔芳特等,《广义函数》,科学出版社(1965). 
					
					 | 
			
| [8] | 
					 Nayfeh,A.H.,Perturbarion Methods,Wiley-Insterscience(1973). 
					
					 | 
			
| [9] | 
					 Ting,L.,Perturbation Methods and Its Application in Mechanics,Bejing(1981). 
					
					 | 
			
| [10] | 
					 刘曾荣、魏锡荣,含有δ函数的弱非线性微分方程的摄动解,应用数学和力学,5,5(1984)691-698. 
					
					 |