WEI De-min, YANG Gui-tong. Nonlinear Dynamic Stability of Composite Laminated Plates[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1113-1116.
Citation:
WEI De-min, YANG Gui-tong. Nonlinear Dynamic Stability of Composite Laminated Plates[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1113-1116.
WEI De-min, YANG Gui-tong. Nonlinear Dynamic Stability of Composite Laminated Plates[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1113-1116.
Citation:
WEI De-min, YANG Gui-tong. Nonlinear Dynamic Stability of Composite Laminated Plates[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1113-1116.
Nonlinear Dynamic Stability of Composite Laminated Plates
1.
Department of Civil Engineering, South China University of Technology, Guangzhou 510640, P. R. China;
Received Date: 2003-05-30
Rev Recd Date:
2004-05-26
Publish Date:
2004-11-15
Abstract
Catastrophe theory was applied to the investigation of nonlinear dynamic stability of composite laminated plates. The influence of large deflection, initial imperfection, support conditions and ply-angle of the fibers were considered. The catastrophic models and the critical conditions of dynamic buckling of composite laminated plates are obtained.
References
[1]
Birman V. Dynamic stability of rectangular laminated composite plates[J].Computers and Structures,1986,24(2):233—238.
doi: 10.1016/0045-7949(86)90282-8
[2]
周承倜,王列东,刘正宁. 复合材料叠层板非线性动力稳定性理论的几个基本问题[A].见:陈树辉,程昌钧,戴世强,等 编.现代数学和力学(MMM—Ⅷ)[C].广州:中山大学出版社,2000,500—506.
[3]
周承倜. 复合材料迭层板的非线性动力稳定性理论[J].应用数学和力学,1991,12(2):101—108.
[4]
王列东,刘正宁,周承倜.初始缺陷和拉-弯耦合对于叠层板的振动、屈曲和非线性动力稳定性的影响[J].应用数学和力学,1999,20(5):477—485.
[5]
WEI De-min,ZHANG Shan-yuan,YANG Gui-tong.Resonance buckling of elastic circular plates[A].In:CHIEN Wei-zang,CHENG Chang-jun,DAI Shi-qiang,et al Eds.Proc 3rd International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press,1998,387—390.
[6]
魏德敏.周期荷载作用下杆的突变失稳分析[J].太原工业大学学报, 1990,20(3):38—43.
[7]
沈茂山,魏德敏.弹性拱振动失稳的突变模型[J].应用数学和力学,1990,11(12):1099—1102.
[8]
魏德敏,杨桂通.薄壁压力管道的突然破裂[J]. 应用数学和力学,2002,23(2):146—149.
[9]
Jones Robert M.Mechanics of Composite Materials[M].Washington USA: Hemisphere Publishing Co, 1975.
Relative Articles
[1] TONG Yao, YAO Yuzhe. 20-Node Hexahedron Symplectic Elements for Stress Analysis of Composite Laminates [J]. Applied Mathematics and Mechanics, 2020, 41(5): 509-516. doi: 10.21656/1000-0887.400283
[2] WANG De-cai, GUAN Qun, FAN Jia-rang. Exact Analytic Solution for Laminated Plates With Free-Edges and Arbitrary Thickness [J]. Applied Mathematics and Mechanics, 2013, 34(7): 672-686. doi: 10.3879/j.issn.1000-0887.2013.07.002
[3] HAO Kou-an, WANG Zhen-qing, ZHOU Li-min. Impact Behaviors and Damage Modes of Composites Under Low-Velocity Impact With Different Layup Thicknesses [J]. Applied Mathematics and Mechanics, 2013, 34(7): 661-671. doi: 10.3879/j.issn.1000-0887.2013.07.001
[4] HAN Hai-tao, ZHANG Zheng, LU Zi-xing. Analytical Method on Bending of Composite Laminated Beams With Delaminations [J]. Applied Mathematics and Mechanics, 2010, 31(7): 843-852. doi: 10.3879/j.issn.1000-0887.2010.07.009
[5] LI Dian-sen, LU Zi-xing, LU Wen-shu. Theoretical Prediction of the Stiffness and Strength of Three-Dimensional and Four-Directional Braided Composites [J]. Applied Mathematics and Mechanics, 2008, 29(2): 149-156.
[6] FU Yi-ming, YANG Jin-hua. Analysis of Delamination Growth for Composite Laminated Cylindrical Shells Under External Pressure [J]. Applied Mathematics and Mechanics, 2007, 28(9): 1009-1020.
[7] CHENG Xiao-quan, LI Zheng-neng. Damage Progressive Model of Compression of Composite Laminates After Low Velocity Impact [J]. Applied Mathematics and Mechanics, 2005, 26(5): 569-576.
[8] ZHANG Shao-qin, YANG Wei-yang. Prediction of Mode Ⅰ Crack Propagation Direction in Carbon-Fiber Reinforced Composite Plate [J]. Applied Mathematics and Mechanics, 2004, 25(6): 653-660.
[9] ZHANG Neng-hui, CHENG Chang-jun. Two-Mode Galerkin Approach in Dynamic Stability Analysis of Viscoelastic Plates [J]. Applied Mathematics and Mechanics, 2003, 24(3): 221-228.
[10] LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical Stability of Viscoelastic Column With Fractional Derivative Constitutive Relation [J]. Applied Mathematics and Mechanics, 2001, 22(3): 250-258.
[11] ZHOU Cheng-ti, WANG Lie-dong. Nonlinear Theory of Dynamic Stability for Laminated Composite Cylindrical Shells [J]. Applied Mathematics and Mechanics, 2001, 22(1): 47-55.
[12] Huang Jinsong, Zeng Guangwu. Analysis and Calculation of the Nonlinear Stability of the Rotational Composite Shell [J]. Applied Mathematics and Mechanics, 2000, 21(2): 185-191.
[13] Yang Weiyang, Zhang Shaoqin. The Crack Tip Fields of Orthotropic Composite Plate under Bending [J]. Applied Mathematics and Mechanics, 1999, 20(2): 193-199.
[14] Huang Xiaoqing, Zhang Hong. Influence of Compression-Bending Coupling on the Stability Behavior of Anisotropic Laminated Panels [J]. Applied Mathematics and Mechanics, 1999, 20(1): 17-24.
[15] Qian Ren-gen, Shouetsu Itou. DynamicStress Intensity Factors around Two Cracks near an Interface of Two Dissimilar EIastic Half-PIanes under In-plane Shear Impact Load [J]. Applied Mathematics and Mechanics, 1995, 16(1): 61-72.
[16] Chien Wei-zang, Huang Qian, Feng Wei. Three Dimensional Stress Analysis of Symmetric Composite Laminates under Uniaxial Extension and in-Plane Pure Shear [J]. Applied Mathematics and Mechanics, 1994, 15(2): 95-103.
[17] Jiang You-liang. On the Completeness for a 3-D Linear Theory of Composite Laminate [J]. Applied Mathematics and Mechanics, 1994, 15(7): 647-655.
[18] Zhou zhu-lin. Buckling Test And Optimum Design of Fiber Reinforced Composites Plates Under Compression [J]. Applied Mathematics and Mechanics, 1993, 14(11): 1017-1024.
[19] Zhou Cheng-ti. Theory of Nonlinear Dynamic Stability for Composite Laminated Plates [J]. Applied Mathematics and Mechanics, 1991, 12(2): 101-108.
[20] Wang Hu Wang, Tsun-kuei. A Donnell Type Theory for Finite Deflection of Stiffened Thin Conical Shells Composed of Composite Materials [J]. Applied Mathematics and Mechanics, 1990, 11(9): 805-816.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 20.4 % FULLTEXT : 20.4 % META : 78.9 % META : 78.9 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF