Zhang Guan-ren. Solution of Non-Linear Heat Conduction Equation and image Method[J]. Applied Mathematics and Mechanics, 1984, 5(4): 553-559.
Citation:
Zhang Guan-ren. Solution of Non-Linear Heat Conduction Equation and image Method[J]. Applied Mathematics and Mechanics, 1984, 5(4): 553-559.
Zhang Guan-ren. Solution of Non-Linear Heat Conduction Equation and image Method[J]. Applied Mathematics and Mechanics, 1984, 5(4): 553-559.
Citation:
Zhang Guan-ren. Solution of Non-Linear Heat Conduction Equation and image Method[J]. Applied Mathematics and Mechanics, 1984, 5(4): 553-559.
Solution of Non-Linear Heat Conduction Equation and image Method
Received Date: 1982-06-24
Publish Date:
1984-08-15
Abstract
In this paper, the author proves that, for a nonlinear heat conduction equation, there is no discontinuous solution. Some methods of solution for a nonlinear conduction equation are depicted. For a plane interface, the reflection and transmission of a heat wave are given by the method of images. The 1st order of approximation of this method is proved. Lastly, the prevention of superheated electrons is laser implosion of deuterium tritium gas spnere with a shell made of high Z material is interpreted.
References
[1]
Зелъдович Я.Б.и Ю.П.Райзер,Фuзuка Убарных Волн Высоко-Темnераnурных Гuбообuнамuческuх Яеленuц,Гифмл,Москва(1963).
[2]
Баренблатт Г.И.,О прибллиженном решении аадач одммериой нестадионанной филътрадии в пористой среде,ПММ,58,(1954),351.
[3]
Richtmyer, R. D. and K. W. Morton, Difference Methods for Initial Value Problem, 2nd edition, John Wiley and Sons, Inc.(1967).
[4]
Баренблатт Г.И.,О некоторых неустаоовившихся движеоиях жидкости и газа в пористой среде,ПММ,56,(1952),67.
[5]
Marshak, R. E., Effect of radiation on shock wave behavior, Phys. of Fluids, Vol. 1,(1958), 24.
[6]
Spitzer, Jr., L., Physics of Fully Ionized Gases, 2nd edition, New York,(1961).
Relative Articles
[1] ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems [J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077
[2] WANG Hong, LI Xiaolin. Analysis of 2D Transient Heat Conduction Problems With the Element-Free Galerkin Method [J]. Applied Mathematics and Mechanics, 2021, 42(5): 460-469. doi: 10.21656/1000-0887.410111
[3] LI Changyu, FANG Yankui, LIU Fuxu, RUAN Yuhang. A Thermal Protective Clothing-Air-Skin Heat Conduction Model and Its Analytical Solution [J]. Applied Mathematics and Mechanics, 2021, 42(2): 162-169. doi: 10.21656/1000-0887.400290
[4] LI Yudong, WANG Fajie, CHEN Wen. MATLAB Implementation of a Singular Boundary Method for Transient Heat Conduction [J]. Applied Mathematics and Mechanics, 2019, 40(3): 259-268. doi: 10.21656/1000-0887.390225
[5] LIU Fang, SHI Wei-ping. Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method [J]. Applied Mathematics and Mechanics, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004
[6] XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation [J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011
[7] WANG Bing-bing, GAO Xin, DUAN Qing-lin. Quadratically Consistent Meshfree Methods for Heat Conduction in Steady State [J]. Applied Mathematics and Mechanics, 2013, 34(7): 750-755. doi: 10.3879/j.issn.1000-0887.2013.07.010
[8] A.H.Mosaffa, F.Talati, M.A.Rosen, H.Basirat Tabrizi. Green’s Function Solution for Transient Heat Conduction in an Annular Fin During Solidification of a PCM [J]. Applied Mathematics and Mechanics, 2012, 33(10): 1180-1188. doi: 10.3879/j.issn.1000-0887.2012.10.004
[9] Rajneesh Kumar, Mandeep Kaur, S. C. Rajvanshi. Wave Propagation at an Interface of Heat Conducting Micropolar Solid and Fluid Media [J]. Applied Mathematics and Mechanics, 2011, 32(7): 826-847. doi: 10.3879/j.issn.1000-0887.2011.07.007
[10] G. C. Shit, R. Haldar. Effect of Thermal Radiation on MHD Viscous Fluid Flow and Heat Transfer Over a Non-Linear Shrinking Porous Sheet [J]. Applied Mathematics and Mechanics, 2011, 32(6): 635-646. doi: 10.3879/j.issn.1000-0887.2011.06.001
[11] Piyanka Dhar, Ranjit Dhar. Optimal Control Problem for Bio-Heat Equation Due to Induced Microwave [J]. Applied Mathematics and Mechanics, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012
[12] A. Rezania, A. Ghorbali, G. Domairry, H. Bararnia. Consideration of Transient Heat Conduction in a Semi-Infinite Medium Using Homotopy Analysis Method [J]. Applied Mathematics and Mechanics, 2008, 29(12): 1479-1485.
[13] Muhammet Yürüsoy. Similarity Solutions for Creeping Flow and Heat Transfer in Second Grade Fluid [J]. Applied Mathematics and Mechanics, 2004, 25(4): 425-432.
[14] LIU Ji-jun. The 3-Layered Explicit Difference Scheme for 2-D Heat Equation [J]. Applied Mathematics and Mechanics, 2003, 24(5): 537-544.
[15] ZENG Wen-ping. A Class of Two-Level Explicit Difference Schemes for Solving Three Dimensional Heat Conduction Equation [J]. Applied Mathematics and Mechanics, 2000, 21(9): 966-972.
[16] Sun Honglie. The High Accuracy Explicit Difference Scheme for Solving Parabolic Equations 3-Dimension [J]. Applied Mathematics and Mechanics, 1999, 20(7): 737-742.
[17] Chang Haiping, Huang Taiping. The Auto-Adjustable Damping Method for Solving Nonlinear Equations [J]. Applied Mathematics and Mechanics, 1998, 19(2): 151-155.
[18] Wang Mingrui, Jin Hui. An Analytical Solution of Heat Conduction on a Locally Nonvniformly Heated Surface of a Plale with Finite Thickness [J]. Applied Mathematics and Mechanics, 1996, 17(5): 465-470.
[19] Yuan Yiwu. The Similar soluions of Nonlinear HeatConductlon Equation [J]. Applied Mathematics and Mechanics, 1995, 16(9): 843-850.
[20] Ouyang Hua-jiang. Criteria for Finite Element Algorithm of Generalized Heat Conduction Equation [J]. Applied Mathematics and Mechanics, 1992, 13(6): 563-571.
Proportional views