Liu Zheng-rong. The Asymptotic Solution of a Kind of Stefan Problem[J]. Applied Mathematics and Mechanics, 1983, 4(6): 801-808.
Citation: Liu Zheng-rong. The Asymptotic Solution of a Kind of Stefan Problem[J]. Applied Mathematics and Mechanics, 1983, 4(6): 801-808.

The Asymptotic Solution of a Kind of Stefan Problem

  • Received Date: 1982-10-07
  • Publish Date: 1983-12-15
  • In this paper, a kind of Stefan problem subject to general initial condition is studied. The slab considered is divided into three regions. There is a different time scale in each one. By means of PLK method or like multi-scales method, the asymptotic solution of each one is obtained. Finally we discuss the asymptotic solution and draw some conclusions.
  • loading
  • [1]
    Sherman,B.,A general one-phase Stefan problem,Quart.Appl.Math.,Vol.28,(1970),377-382.
    [2]
    Kyner,Walter.T.,On a free boundary value problem for the heat equations,Quart.Appl.Math.,Vol.17,(1959),305-310.
    [3]
    Miranker,W.L.,A free boundary value problem for the heat equation,Quart.Appl.Math.,Vol.16,(1958),121-130.
    [4]
    Meyer,G.H.,One-dimensional parabolic free boundary problem,SIAM Review,Vol.19,(1977),17-34.
    [5]
    Evans,G.W.,E.Isaacson and I.Macdonald,Stefan-like problem,Quart.Appl.Math.,Vol.8,(1950),312-319.
    [6]
    Boley,Bruns.A.,A method of heat conduction analysis of melting and solidi-fication problem,J.Math.and Phys.,Vol.40,(1961),300-313.
    [7]
    Pedroso,R.I.,and G.A.Domoto,Perturbation solutions for spherical solidification of saturated liquid,ASME.J.Heat Transfer,Vol 95,(1973),42-46.
    [8]
    Weimbaum,S.and L.M.Jiji,Singular perturbation theory for melting or freezing in finite domains initially not at the fusion temperature,J.Appl.Mech.,Vol.44,(1977),25-30.
    [9]
    Rubinsky,B.and E.G.Cravalho,The determination of the thermal history in a one-dimensional freezing sysytem by perturbation method,ASME.J.Heat Transfer,Vol.101,(1979),326-330.
    [10]
    Tiji,Latif M.and Sheldon Weibaum,Perturbation solution for melting of freezing in annular regions initially not at the fusion temperature,Inter.J.Heat Mass Transfer,Vol.21,(1978),581-590.
    [11]
    Predroso,R.I.and G.A.Domoto,Exact solution by perturbation method for planar solidification of a saturated liquid with convection at the wall,Inter.J.Heat Mass Transfer,Vol.16,(1973),1816-1819.
    [12]
    刘曾荣,一维熔解与凝固问题的摄动解,(尚未发表).
    [13]
    陈则靓、葛新石,相变热传导问题,混合法近似解(尚大发表).
    [14]
    Nayfeh,A.H.,Perturbation Methods,Wiley-Interscience,New York,Chap.3,(1973).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1742) PDF downloads(577) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return