Wang Zhen-ming, Liu Guo-xi, Lü Ming-shen. Application of the Method of Split Rigidities to Anisotropic Laminated Shallow Shells[J]. Applied Mathematics and Mechanics, 1982, 3(6): 771-780.
Citation:
Wang Zhen-ming, Liu Guo-xi, Lü Ming-shen. Application of the Method of Split Rigidities to Anisotropic Laminated Shallow Shells[J]. Applied Mathematics and Mechanics, 1982, 3(6): 771-780.
Wang Zhen-ming, Liu Guo-xi, Lü Ming-shen. Application of the Method of Split Rigidities to Anisotropic Laminated Shallow Shells[J]. Applied Mathematics and Mechanics, 1982, 3(6): 771-780.
Citation:
Wang Zhen-ming, Liu Guo-xi, Lü Ming-shen. Application of the Method of Split Rigidities to Anisotropic Laminated Shallow Shells[J]. Applied Mathematics and Mechanics, 1982, 3(6): 771-780.
Application of the Method of Split Rigidities to Anisotropic Laminated Shallow Shells
Received Date: 1980-07-18
Publish Date:
1982-12-15
Abstract
In this paper, according to the method stated by Hu Hai-chang in [3], on the basis of [1], the method of split rigidities is generalized for the purpose of solving the problems of lateral deflection, stability and lateral vibration for anisotropic laminated shallow shells,and a simple and practical approximate method is obtained,in which the errors and computing work are comparatively small.
References
[1]
王震鸣,刘国玺,吕明身,各向异性多层扁壳的大挠度方程,应用数学和力学,3,1(1981).
[2]
Yinson,J.R.and T,W,Chou,Composite materials and their use in structures(1975).
[3]
中国科学院北京力学研究所固体力学研究室板壳组著,《夹层板壳的弯曲稳定和振动》,科学出版社,(1977).
[4]
Jones,R,M Mechanics of composite materials,(1975).
Relative Articles
[1] LIU Hang, DU Guojun, FENG Yan. Study on Equivalent Stiffnesses of Orthotropic Hemi-Spherical Convex Plates [J]. Applied Mathematics and Mechanics, 2020, 41(1): 70-80. doi: 10.21656/1000-0887.400181
[2] SUN Shu-lei, MAO Jian-liang, PENG Xiong-qi. An Anisotropic Hyperelastic Constitutive Model With Fibre Bending Stiffness for Cord-Rubber Composites [J]. Applied Mathematics and Mechanics, 2014, 35(5): 471-477. doi: 10.3879/j.issn.1000-0887.2014.05.001
[3] S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Irregularity on the Propagation of Torsional Surface Waves in an Initially Stressed Anisotropic Poro-Elastic Layer [J]. Applied Mathematics and Mechanics, 2010, 31(4): 451-462. doi: 10.3879/j.issn.1000-0887.2010.04.007
[4] GUO Shao-hua. Eigen Theory of Static Electromagnetic Field for Anisotropic Media [J]. Applied Mathematics and Mechanics, 2009, 30(5): 598-606. doi: 10.3879/j.issn.1000-0887.2009.05.010
[5] Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources [J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.
[6] SU Cheng, HAN Da-jian. Elastic Analysis of Orthotropic Plane Problems by the Spline Fictitious Boundary Element Method [J]. Applied Mathematics and Mechanics, 2002, 23(4): 400-406.
[7] KANG Sheng-liang. The Method of Multiple Scales Applied to the Nonlinear Stability Problem of a Truncated Shallow Spherical Shell of Variable Thickness With the Large Geometrical Parameter [J]. Applied Mathematics and Mechanics, 2001, (10): 1081-1091.
[8] SONG Tian-shu, LIU Dian-kui. An Application of Theoretical Solutions About Cylindrical Shells With Small Openings [J]. Applied Mathematics and Mechanics, 2000, 21(9): 961-965.
[9] Wang Xingguo, Hua Yu, Li Zhengneng. Constitutive Relation and Stiffness Degradation of Cracked Anisotropic Composite Laminates(Ⅱ)——Determination of Resolved Stiffness and Investigation of Stiffness Degradation for Cracked Laminates [J]. Applied Mathematics and Mechanics, 1998, 19(6): 520-527.
[10] Hua Yu, Wang Xingguo, Li Zhengneng. Property Degradation of Anisotropic Composite Laminates with Matrix Cracking(Ⅰ)——Constitutive Relation Developing for (θm /90n )s Cracked Laminates by Stiffness Partition [J]. Applied Mathematics and Mechanics, 1998, 19(3): 257-265.
[11] Wu Jiancheng, Pan Lizhou. Nonlinear Theory of Multilayer Sandwich Shells and Its Application (Ⅱ)-Fundamental Equations for Orthotropic Shallow Shells [J]. Applied Mathematics and Mechanics, 1997, 18(2): 119-129.
[12] Wang Yonggang, Wang Xinzhi, Song Huifang. Nonlinear Free Vibration of Orthotropic Shallow Shells of Revolution under the Static Loads [J]. Applied Mathematics and Mechanics, 1997, 18(6): 545-550.
[13] Luo Jian-hui, Li Li-juan. Theory of Elasticity of an Anisotropic Body for the Bending of Beams [J]. Applied Mathematics and Mechanics, 1992, 13(11): 985-991.
[14] Fang Ying-guang, Pan Ji-hao, Chen wei-xin. Theory of Thick-Walled Shells and Its Application in Cylindrical Shell [J]. Applied Mathematics and Mechanics, 1992, 13(11): 1009-1019.
[15] Li Dong. Nonlinear Vibrations of Orthotropic Shallow Shells of Revolution [J]. Applied Mathematics and Mechanics, 1992, 13(4): 313-325.
[16] Wang You-cheng, Wang Zuo-hui. Isotropicalized Spline Integral Equation Method for the Analysis of Anisotropic Plates [J]. Applied Mathematics and Mechanics, 1990, 11(9): 779-784.
[17] Jin Yong-jie, Li Ru-feng, Zhou Chun-tian, Gou Qiu-jing. The Elasto-PIastic Strain Analysis of Notched Plate under Cyclic Loading——An Application of Plastic Anisotropic Hardening Theory [J]. Applied Mathematics and Mechanics, 1989, 10(9): 773-777.
[18] Shen Hui-chuan. The Schrodinger Equation in Theory of Plates and Shells with Orthorhombic Anisotropy [J]. Applied Mathematics and Mechanics, 1987, 8(4): 357-365.
[19] Cai Hai-tao. The Periodic Cracks of an Infinite Anisotropic Media for Plane Skew-Symmetric Loadings [J]. Applied Mathematics and Mechanics, 1986, 7(2): 139-144.
[20] Wang Zhen-ming, Liu Guo-xi, Lü Ming-shen. The Finite Deflection Equations of Anisotropic Laminated Shallow Shells [J]. Applied Mathematics and Mechanics, 1982, 3(1): 49-65.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 20.1 % FULLTEXT : 20.1 % META : 79.5 % META : 79.5 % PDF : 0.4 % PDF : 0.4 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.1 % 其他 : 7.1 % China : 2.3 % China : 2.3 % 上海 : 0.1 % 上海 : 0.1 % 北京 : 1.2 % 北京 : 1.2 % 呼和浩特 : 0.1 % 呼和浩特 : 0.1 % 咸阳 : 0.1 % 咸阳 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 山景城 : 0.1 % 山景城 : 0.1 % 张家口 : 1.6 % 张家口 : 1.6 % 新乡 : 0.1 % 新乡 : 0.1 % 杭州 : 0.4 % 杭州 : 0.4 % 洛杉矶 : 0.4 % 洛杉矶 : 0.4 % 淮安 : 0.8 % 淮安 : 0.8 % 深圳 : 0.1 % 深圳 : 0.1 % 湖州 : 0.3 % 湖州 : 0.3 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 6.5 % 芒廷维尤 : 6.5 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 77.1 % 西宁 : 77.1 % 贵港 : 0.1 % 贵港 : 0.1 % 郑州 : 0.5 % 郑州 : 0.5 % 其他 China 上海 北京 呼和浩特 咸阳 哥伦布 山景城 张家口 新乡 杭州 洛杉矶 淮安 深圳 湖州 石家庄 芒廷维尤 芝加哥 苏州 西宁 贵港 郑州