| Citation: | LOU Jing-jun, HE Qi-wei, ZHU Shi-jian. Chaos in the Softening Duffing System Under Multi-Frequency Periodic Forces[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1299-1304. | 
	                | [1] | 
					 刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994: 7—10. 
					
					 | 
			
| [2] | 
					 Moon F C, Holmes W T.Double Poincare sections of a quasi-periodically forced, chaotic attractor[J].Physics Letters A,1985,111(4):157—160. doi:  10.1016/0375-9601(85)90565-1 
					
					 | 
			
| [3] | 
					 Wiggins S.Chaos in the quasiperiodically forced Duffing oscillator[J]. Physics Letters A,1987,124(3):138—142. doi:  10.1016/0375-9601(87)90240-4 
					
					 | 
			
| [4] | 
					 Wiggins S.Global Bifurcations and Chaos—Analytical Methods[M].New York: Springer-Verlag, 1988: 313—333. 
					
					 | 
			
| [5] | 
					 Kayo IDE, Wiggins S.The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator[J].Physica D,1989,34(1):169—182. doi:  10.1016/0167-2789(89)90232-7 
					
					 | 
			
| [6] | 
					 Heagy J, Ditto W L.Dynamics of a two-frequency parametrically driven Duffing oscillator[J].Journal of Nonlinear Science,1991,1(2):423—455. doi:  10.1007/BF02429848 
					
					 | 
			
| [7] | 
					 LU Qi-shao.Principle resonance of a nonlinear system with two-frequency parametric and self-excitations[J].Nonlinear Dynamics,1991,2(6):419—444. doi:  10.1007/BF00045437 
					
					 | 
			
| [8] | 
					 陆启韶、黄克累.非线性动力学、分岔和混沌[A].见:黄文虎,陈滨,王照林 编.一般力学(动力学、振动与控制)最新进展[C].北京:科学出版社,1994, 11—18. 
					
					 | 
			
| [9] | 
					 Yagasaki K, Sakata M,Kimura K.Dynamics of weakly nonlinear system subjected to combined parametric and external excitation [J].Trans ASME,Journal of Applied Mechanics,1990,57(1):209—217. doi:  10.1115/1.2888306 
					
					 | 
			
| [10] | 
					 Yagasaki K.Chaos in weakly nonlinear oscillator with parametric and external resonance[J].Trans ASME,Journal of Applied Mechanics,1991,58(1):244—250. doi:  10.1115/1.2897158 
					
					 | 
			
| [11] | 
					 Yagasaki K.Chaotic dynamics of a quasi-periodically forced beam[J].Trans ASME,Journal of Applied Mechanics,1992,59(1): 161—167. doi:  10.1115/1.2899422 
					
					 | 
			
| [12] | 
					 陈予恕,王德石.轴向激励下梁的混沌运动[J].非线性动力学学报,1993,1(2):124—135. 
					
					 | 
			
| [13] | 
					 Kapitaniak T.Combined bifurcations and transition to chaos in a nonlinear oscillator with two external periodic forces[J].Journal of Sound and Vibration,1988,121(2):259—268. doi:  10.1016/S0022-460X(88)80028-2 
					
					 | 
			
| [14] | 
					 Kapitaniak T.Chaotic distribution of nonlinear systems perturbed by random noise[J].Physical Letters A,1986,116(6):251—254. doi:  10.1016/0375-9601(86)90588-8 
					
					 | 
			
| [15] | 
					 Kapitaniak T.A property of a stochastic response with bifurcation to nonlinear system[J].Journal of Sound and Vibration,1986,107(1):177—180. doi:  10.1016/0022-460X(86)90292-0 
					
					 | 
			
| [16] | 
					 毕勤胜,陈予恕,吴志强.多频激励Duffing系统的分岔和混沌[J].应用数学和力学,1998,19(2):113—120. 
					
					 | 
			
| [17] | 
					 Leung A Y T, Fung C.Construction of chaotic regions [J].Journal of Sound and Vibration,1989,131(3): 445—455. doi:  10.1016/0022-460X(89)91004-3 
					
					 | 
			
| [18] | 
					 Stupnicka S,Bajkowski. The 1/2 subharmonic resonance its transition to chaos motion in a nonlinear oscillator[J].IFTR Reports,1986,4(1):67—72. 
					
					 | 
			
| [19] | 
					 Dooren R V.On the transition from regular to chaotic behaviour in the Duffing oscillator[J].Journal of Sound and Vibration,1988,123(2):327—339. doi:  10.1016/S0022-460X(88)80115-9 
					
					 | 
			
| [20] | 
					 Yagasaki K.Homoclinic tangles,phase locking,and chaos in a two-frequency perturbation of Duffing equation[J].Journal of Nonlinear Science,1999,9(1):131—148. doi:  10.1007/s003329900066 
					
					 |