Chang Shih-sen. Random Fixed Point Theorems for Commuting Random Operators in Probabilistic Functional Analysis[J]. Applied Mathematics and Mechanics, 1982, 3(3): 345-354.
Citation: Chang Shih-sen. Random Fixed Point Theorems for Commuting Random Operators in Probabilistic Functional Analysis[J]. Applied Mathematics and Mechanics, 1982, 3(3): 345-354.

Random Fixed Point Theorems for Commuting Random Operators in Probabilistic Functional Analysis

  • Received Date: 1981-10-24
  • Publish Date: 1982-06-15
  • Random fixed point theorems are of fundamental importance in probabilistic functional analysis. In complete separable metric space random fixed point theorems have been discussed by Bharucha-Reid[1], Hans[3], Itoh[4,5] and the author's papers[15-20].In this paper we obtain a random fixed point theorem for commuting random operators in probabilistic functional analysis. Our results generalize some important results also extend and unify some results in Jungck[6,7,8]. Das and Naiki[9] as well as Bhoades[10] adn ciric[11].
  • loading
  • [1]
    Bharucha-Reid,A.T.,Random Integral Equation,Academic Press,New York,London,1972.
    [2]
    Bharucha-Reid,A.T.,Fixed point theorem in probabilistic analysis,Bull.Amer.Math.Soc.82(1976),641-657.
    [3]
    Hans.O.,Random fixed point theorems.in Trans.of the First Prague Conference on Information Theory,Statistical Decision Functions,Random Processes,105-125. Prague.(1957).
    [4]
    Itoh.S.,A random fixed point theorem for a.multivalued contraction mapping,Pacific J.Math.68(1977),85-90.
    [5]
    Itoh.S.,Random fixed point theorems with an application to random differential equations in Banach space,J.Math.Anal.Appl.67. No.2(1979),261-273.
    [6]
    Jungck.G.,Commuting mappings and fixed points,Amer,Math.Monthly 83(1976),261-263.
    [7]
    Jungck.F.,Periodic and Fixed points,and commuting mappings,Proc.Amer.Math.Soc.V.76,No.2(1979),333-338.
    [8]
    Jungck.G.,A common fixed point theorem for commuting maps on L-spaces,Math. Japonica 25. NO. 1 (1980), 81-85.
    [9]
    Das,K. M., and Naik. K. V., Common fixed point theorems for commuting maps on a metric space,Proc. Amer. Math. Soc. V. 77. NO. 3 (1979),369-373.
    [10]
    Rhoades,B. E., Comparison of various definitions of contractive mappings.Trans. Amer. Math. Soc. 226 (1977). 256-290.
    [11]
    Ciric. B., A generalization of Banach's contraction principle. Proc. Amer Math. Soc. v. 45,NO. 2,(1974),267-273.
    [12]
    Kannan,R.,and Salehi, H., Random nonlinear-equations and monotone nonlinearities, J. Math. Anal. Appl. V. 57, (1977), 234-256.
    [13]
    Spacek. A., Zufallige Gleichungen. Czechoslovak. Math. J. 5 (1955), 462-466.
    [14]
    Leader. S., Fixed points for general contractions in metric spaces. Math.Japonica 24. NO. 1 (1979), 17-24.
    [15]
    张石生,关于-个多值映象的不动点定理,自然杂志,6,(1981),476-477.
    [16]
    Chang Shih-sen. Random fixed point theorem in probabilistic analysis, Nonlinear Analysis. V. 5, NO. 2. (1981), 113-122.
    [17]
    张石生,关于随机映象的-个随机不动点定理,成都科技大学学报,2.(1981),73-79
    [18]
    张石生,关于随机分析的不动点定理(1),四川大学学报.3,(1980),9-16
    [19]
    张石牛.陈绍仲.随机分析中的不动点宁理及对随机逼近理论的应用.应用戮学学报,(1981)
    [20]
    张石生.关于多值映象序列的不动点定理,四川大学学报.4,(1980),61-68
    [21]
    王梓坤.随机泛函分析引论、数学进展.5.1(1962),46-71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1845) PDF downloads(482) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return