| Citation: | Chang Shih-sen. Random Fixed Point Theorems for Commuting Random Operators in Probabilistic Functional Analysis[J]. Applied Mathematics and Mechanics, 1982, 3(3): 345-354. | 
	                | [1] | 
					 Bharucha-Reid,A.T.,Random Integral Equation,Academic Press,New York,London,1972. 
					
					 | 
			
| [2] | 
					 Bharucha-Reid,A.T.,Fixed point theorem in probabilistic analysis,Bull.Amer.Math.Soc.82(1976),641-657. 
					
					 | 
			
| [3] | 
					 Hans.O.,Random fixed point theorems.in Trans.of the First Prague Conference on Information Theory,Statistical Decision Functions,Random Processes,105-125. Prague.(1957). 
					
					 | 
			
| [4] | 
					 Itoh.S.,A random fixed point theorem for a.multivalued contraction mapping,Pacific J.Math.68(1977),85-90. 
					
					 | 
			
| [5] | 
					 Itoh.S.,Random fixed point theorems with an application to random differential equations in Banach space,J.Math.Anal.Appl.67. No.2(1979),261-273. 
					
					 | 
			
| [6] | 
					 Jungck.G.,Commuting mappings and fixed points,Amer,Math.Monthly 83(1976),261-263. 
					
					 | 
			
| [7] | 
					 Jungck.F.,Periodic and Fixed points,and commuting mappings,Proc.Amer.Math.Soc.V.76,No.2(1979),333-338. 
					
					 | 
			
| [8] | 
					 Jungck.G.,A common fixed point theorem for commuting maps on L-spaces,Math. Japonica 25. NO. 1 (1980), 81-85. 
					
					 | 
			
| [9] | 
					 Das,K. M., and Naik. K. V., Common fixed point theorems for commuting maps on a metric space,Proc. Amer. Math. Soc. V. 77. NO. 3 (1979),369-373. 
					
					 | 
			
| [10] | 
					 Rhoades,B. E., Comparison of various definitions of contractive mappings.Trans. Amer. Math. Soc. 226 (1977). 256-290. 
					
					 | 
			
| [11] | 
					 Ciric. B., A generalization of Banach's contraction principle. Proc. Amer Math. Soc. v. 45,NO. 2,(1974),267-273. 
					
					 | 
			
| [12] | 
					 Kannan,R.,and Salehi, H., Random nonlinear-equations and monotone nonlinearities, J. Math. Anal. Appl. V. 57, (1977), 234-256. 
					
					 | 
			
| [13] | 
					 Spacek. A., Zufallige Gleichungen. Czechoslovak. Math. J. 5 (1955), 462-466. 
					
					 | 
			
| [14] | 
					 Leader. S., Fixed points for general contractions in metric spaces. Math.Japonica 24. NO. 1 (1979), 17-24. 
					
					 | 
			
| [15] | 
					 张石生,关于-个多值映象的不动点定理,自然杂志,6,(1981),476-477. 
					
					 | 
			
| [16] | 
					 Chang Shih-sen. Random fixed point theorem in probabilistic analysis, Nonlinear Analysis. V. 5, NO. 2. (1981), 113-122. 
					
					 | 
			
| [17] | 
					 张石生,关于随机映象的-个随机不动点定理,成都科技大学学报,2.(1981),73-79 
					
					 | 
			
| [18] | 
					 张石生,关于随机分析的不动点定理(1),四川大学学报.3,(1980),9-16 
					
					 | 
			
| [19] | 
					 张石牛.陈绍仲.随机分析中的不动点宁理及对随机逼近理论的应用.应用戮学学报,(1981) 
					
					 | 
			
| [20] | 
					 张石生.关于多值映象序列的不动点定理,四川大学学报.4,(1980),61-68 
					
					 | 
			
| [21] | 
					 王梓坤.随机泛函分析引论、数学进展.5.1(1962),46-71 
					
					 |