Citation: | SHENG Dong-fa, CHENG Chang-jun, FU Ming-fu. Generalized Variational Principles of the Viscoelastic Body With Voids and Their Applications[J]. Applied Mathematics and Mechanics, 2004, 25(4): 345-353. |
[1] |
钱伟长.变分法与有限元[M].北京:科学出版社,1980.
|
[2] |
钱伟长.广义变分原理[M].北京:知识出版社,1985.
|
[3] |
Gurtin M E.Variational principles for linear elastodynamics[J].Archive for Rational Mechanics and Analysis,1964,16(1):34—50.
|
[4] |
罗恩.关于线弹性动力学中各种Gurtin型变分原理[J].中国科学,A辑,1987,17(9): 936—948.
|
[5] |
罗恩.关于线粘弹性动力学中各种变分原理[J].力学学报,1990,22(4):484—489.
|
[6] |
罗恩.压电热弹性动力学的一些基本原理[J].中国科学,A辑, 1999,29(9):851—858.
|
[7] |
程昌钧,卢华勇.粘弹性Timoshenko梁的变分原理和静动力学行为分析[J].固体力学学报,2002,23(2):190—196.
|
[8] |
CHENG Chang-jun, ZHANG Neng-hui. Variational principles on static-dynamic analysis of visco~elastic thin plates with applications[J].Int J Solids and Structures,1998,35(33):4491—4505. doi: 10.1016/S0020-7683(97)00262-X
|
[9] |
梁立孚,章梓茂.推导弹性力学变分原理和一种凑合法—─反逆法[J].哈尔滨船舶工程学院学报,1985,6(3):86—95.
|
[10] |
Cowin S C, Nunziato J W. Linear elastic materials with voids[J].J Elasticity,1983,13(2):125—147. doi: 10.1007/BF00041230
|
[11] |
罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994.
|
[1] | GUAN Yuming, GE Xinsheng. Dynamic Modeling and Analysis of the Central Rigid Body-Timoshenko Beam Model Based on Unconstrained Modes[J]. Applied Mathematics and Mechanics, 2022, 43(2): 156-165. doi: 10.21656/1000-0887.420089 |
[2] | WANG Le, LI Dong. A Design Method of Impact Failure Criteria for Timoshenko Beams Under Support Excitations[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1072-1082. doi: 10.21656/1000-0887.400318 |
[3] | HUANG Qiang, LIU Ganbin, Lü Qing, HUANG Hongwei, ZHENG Rongyue. Comparative Analysis of Dynamic Responses of Timoshenko Beams on Visco-Elastic Foundations Under Moving Loads[J]. Applied Mathematics and Mechanics, 2020, 41(7): 735-746. doi: 10.21656/1000-0887.400235 |
[4] | FU Bao-lian. Variational Principles for Dual and Triple Mixed Variables of Linear Elasticity With Finite Displacements and the Application[J]. Applied Mathematics and Mechanics, 2017, 38(11): 1251-1268. doi: 10.21656/1000-0887.380004 |
[5] | WU Feng, XU Xiao-ming, GAO Qiang, ZHONG Wan-xie. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001 |
[6] | ZHANG Li-xiang, GUO Ya-kun, ZHANG Hong-ming. Analysis of Fully Coupled Flow-Induced Vibration of Structure Under Small Deformation With GMRES[J]. Applied Mathematics and Mechanics, 2010, 31(1): 81-90. doi: 10.3879/j.issn.1000-0887.2010.01.009 |
[7] | ZHANG Shan-yuan, LIU Zhi-fang. Nonlinear Flexural Waves and Chaos Behavior in Finite-Deflection Timoshenko Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1276-1286. doi: 10.3879/j.issn.1000-0887.2010.11.002 |
[8] | ZHENG Cheng-bo, LIU Bin, WANG Zuo-jun, ZHENG Shi-ke. Generalized Variational Principles for Boundary Value Problem of Electromagnetic Field in Electrodynamics[J]. Applied Mathematics and Mechanics, 2010, 31(4): 443-450. doi: 10.3879/j.issn.1000-0887.2010.04.006 |
[9] | WANG Xing-zhe. Changes of Natural Frequency of a Ferromagnetic Rod in Magnetic Field Due to Magnetoelastic Interaction[J]. Applied Mathematics and Mechanics, 2008, 29(8): 927-935. |
[10] | LI Shi-rong, ZHANG Jing-hua, ZHAO Yong-gang. Thermal Post-Buckling of Functionally Graded Material Timoshenko Beams[J]. Applied Mathematics and Mechanics, 2006, 27(6): 709-715. |
[11] | CHENG Chang-jun, SHENG Dong-fa, LI Jing-jing. Quasi-Static Analysis for Viscoelastic Timoshenko Beams With Damage[J]. Applied Mathematics and Mechanics, 2006, 27(3): 267-274. |
[12] | CHEN Rong, ZHENG Hai-tao, XUE Song-tao, TANG He-sheng, WANG Yuan-gong. Analysis on Transverse Impact Response of an Unrestrained Timoshenko Beam[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1195-1202. |
[13] | ZHANG Guo-qing, YU Jian-xing. Study of the Equivalent Theorem of Generalized Variational Principles in Elasticity[J]. Applied Mathematics and Mechanics, 2004, 25(3): 313-322. |
[14] | Yu Aimin. Generalized Variational Principle on Nonlinear Theory of Naturally Curved and Twisted Closed Thin-Walled Composite Beams[J]. Applied Mathematics and Mechanics, 2000, 21(3): 290-296. |
[15] | Shi Zhifei, Huang Shuping, Zhang Zimao. Variational Principles of Fluid Full-Filled Elastic Solids[J]. Applied Mathematics and Mechanics, 1999, 20(3): 249-255. |
[16] | Cheng Changiun, Yang Xiao. The Mathematical Models and Generalized Variational Principles of Nonlinear Analysis for Perforated Thin Plates[J]. Applied Mathematics and Mechanics, 1996, 17(2): 105-114. |
[17] | Zhao Yu-xiang, Gu Xiang-zhen, Li Huan-qiu. Generalized Variational Principles of Symmetrical Elasticity Problem of Large Deformation[J]. Applied Mathematics and Mechanics, 1994, 15(9): 767-774. |
[18] | Zhao Yu-xiang, Gu Xiang-zhen, Song Xi-tai. Large Deformation Symmetrical Elasticity Problems Solved by the Variational Method[J]. Applied Mathematics and Mechanics, 1993, 14(8): 679-685. |
[19] | Cheng Xiang-sheng. The Generalized Variational Principles in Applications for Nonlinear Structural Analysis[J]. Applied Mathematics and Mechanics, 1993, 14(5): 397-406. |
[20] | Hsueh Dah-wei. Generalized Variational Principles on Nonlinear Theory of Elasticity with Finite Displacements[J]. Applied Mathematics and Mechanics, 1991, 12(3): 209-218. |