KONG Fan-zhong, ZHENG Xiao-ping, YAO Zhen-han. Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1373-1379.
Citation: KONG Fan-zhong, ZHENG Xiao-ping, YAO Zhen-han. Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1373-1379.

Numerical Simulation of 2D Fiber-Reinforced Composites Using Boundary Element Method

  • Received Date: 2003-08-25
  • Rev Recd Date: 2005-07-29
  • Publish Date: 2005-11-15
  • The boundary element method was improved for the 2D elastic composites with randomly distributed inclusions.This problem can be reduced to a boundary integral equation for a multi-connected domain.Further,considering the matrices of the tractions and displacements for each group of the identical inclusion were the same,an effective computational scheme was designed,since the orders of the resulting matrix equations can be greatly reduced.Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem.The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.
  • loading
  • [1]
    Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proc Royal Soc London A,1957,241(1226):376—396. doi: 10.1098/rspa.1957.0133
    [2]
    Hashin Z.The elastic moduli of heterogeneous materials[J].J Appl Mech,1962,29(1):143—150. doi: 10.1115/1.3636446
    [3]
    Budiansky Y.On the elastic moduli of heterogeneous materials[J].J Mech Phys Solids,1965,13(4):223—227. doi: 10.1016/0022-5096(65)90011-6
    [4]
    Hill R.A Self-consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13(4):213—222. doi: 10.1016/0022-5096(65)90010-4
    [5]
    Christensen R M,Lo K H.Solutions for effective shear properties in three phase sphere and cylinder models[J].J Mech Phys Solids,1979,27(4):315—330. doi: 10.1016/0022-5096(79)90032-2
    [6]
    Aboudi J, Benveniste Y.The effective moduli of cracked bodies in plane deformation[J].Engng Fracture Mech,1987,26(2):171—84. doi: 10.1016/0013-7944(87)90195-0
    [7]
    Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with mis-fitting inclusions[J].Acta Metall,1973,21(4):571—583. doi: 10.1016/0001-6160(73)90064-3
    [8]
    Isida M, Igawa H.Analysis of zig-zag array of circular holes in an infinite solid under uniaxial tension[J].Int J Solids Struc,1991,27(7):849—864. doi: 10.1016/0020-7683(91)90020-G
    [9]
    Day A R,Snyder K A,Garboczi E J,et al.The elastic moduli of a sheet containing circular holes[J].J Mech Phys Solids,1992,40(5):1031—1051. doi: 10.1016/0022-5096(92)90061-6
    [10]
    HU Ning,WANG Bo,TAN Guo-wen,et al.Effective elastic properties of 2-D solids with circular holes: numerical simulations[J].Composites Science and Technology,2000,60(9):1811—1823. doi: 10.1016/S0266-3538(00)00054-3
    [11]
    KONG Fan-zhong,YAO Zhen-han,ZHENG Xiao-ping.BEM for simulation of a 2D elastic body with randomly distributed circular inclusions[J].Acta Mechanica Solida Sinica,2002,15(1):81—88.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4165) PDF downloads(669) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return