Citation: | ZHANG Jing, ZHOU Zhe-wei. Chebyshev Approximation of the Second Kind of Modified Bessel Function of Order Zero[J]. Applied Mathematics and Mechanics, 2004, 25(5): 441-445. |
[1] |
Amos D E.Computation of modified Bessel functions and their ratios[J].Math Comp,1974,28(24):239—251. doi: 10.1090/S0025-5718-1974-0333287-7
|
[2] |
Campbell J B.Bessel functions In(z) and Kn(z) of real order and complex argument[J].Comput Phys Comm,1981,24(1):97—105. doi: 10.1016/0010-4655(81)90109-0
|
[3] |
Gautschi W,Slavik J.On the computation of modified Bessel function ratios[J].Math Comp,1978,32(143):865—875. doi: 10.1090/S0025-5718-1978-0470267-9
|
[4] |
Kerimov M K,Skorokhodov S L.Calculation of modified Bessel functions in the complex domain[J].U S S R Comput Math and Math Phys,1984,24(3):15—24. doi: 10.1016/0041-5553(84)90038-7
|
[5] |
Segura J ,de Cordoba Fernandez P, Ratis Yu L.A code to evaluate modified Bessel functions based on the continued fraction method[J].Comput Phys Comm,1997,105(2/3):263—272. doi: 10.1016/S0010-4655(97)00069-6
|
[6] |
Thompson I J,Barnett A R.Modified Bessel functions In(z) and Kn(z) of real order and complex argument,to selected accuracy[J].Comput Phys Comm,1987,47(4):245—257. doi: 10.1016/0010-4655(87)90111-1
|
[7] |
Yoshida T,Ninomiya I.Computation of Bessel functions Kn(z) with complex argument by tau method[J].J Inform Process,1974,14(1):32—37.
|
[8] |
Luke Y L.The Special Functions and Their Approximations[M].New York:Academic Press,1969.
|
[9] |
Boyd J P.Orthogonal rational function on a semi-infinite[J].Journal of Computational Physics,1987,70:63—88. doi: 10.1016/0021-9991(87)90002-7
|