Citation: | XU Jian, CHEN Yu-shu. Effects of Time Delayed Velocity Feedbacks on Self-Sustained Oscillator With Excitation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 455-466. |
[1] |
CHEN Yu-shu,XU Jian.Bifurcation in nonlinear systems with parametric excitation[J].Doklady Mathematics,1997,56(3):880—883.
|
[2] |
Van der Pol B,Van der Mark J.Frequency demultiplication[J].Nature,1927,120(1):363—364. doi: 10.1038/120363a0
|
[3] |
Wischert W,Wunderlin W,Pelster A,et al.Delay-induced instabilities in nonlinear feedback systems[J].Phys Rev E,1994,49(1):203—219. doi: 10.1103/PhysRevE.49.203
|
[4] |
Tass P,Kurths J,Rosenblum M G,et al.Delay-induced transitions in visually guided movements[J].Phys Rev E,1996,54(3):R2224—R2227.
|
[5] |
Nayfeh A H,Chin C M,Pratt J.Perturbation methods in nonlinear dynamics-applications to machining dynamics[J].J Manuf Sci Eng,1997,119(2):485—493. doi: 10.1115/1.2831178
|
[6] |
LIAO Xiao-feng,YU Jeu-bang.Robust stability for interval Hopfield neutral networks with time delay[J].IEEE Trans N N,1998,9(5):1042—1046.
|
[7] |
CAO Jin-de.Periodic oscillation and exponential stability of delayed CNNs[J].Phys Lett A,2000,270(3/4):157—163. doi: 10.1016/S0375-9601(00)00300-5
|
[8] |
Wulf V,Ford N J.Numerical Hopf bifurcation for a class delay differential equations[J].J Comput Appl Math,2000,115(2):601—616. doi: 10.1016/S0377-0427(99)00181-8
|
[9] |
YAO Wei-guang,YU Pei,Essex C.Delayed stochastic differential model for quiet standing[J].Phys Rev E,2001,63(2):021902—021904. doi: 10.1103/PhysRevE.63.021902
|
[10] |
Reddy D V R,Sen A,Johnston G L.Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks[J].Physica D,2000,144(2):335—357. doi: 10.1016/S0167-2789(00)00086-5
|
[11] |
Campbell S A,Bélair J,Ohira T,et al.Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback[J].Chaos,1995,5(4):640—645. doi: 10.1063/1.166134
|
[12] |
Campbell S A,Bélair J,Ohira T,et al.Limit cycles, tori,and complex dynamics in a second-order differential equations with delayed negative feedback[J].J Dynamic Differential Equations,7(2):213—236.
|
[13] |
Bélair J,Campbell S.A stability and bifurcations of equilibria in multiple-delayed differential equation[J].SIAM J Appl Math,1994,54(7):1402—1424. doi: 10.1137/S0036139993248853
|
[14] |
XU Jian,LU Qi-shao.Hopf bifurcation of time-delay linear equations[J].Int J Bif Chaos,1999,9(5):939—951. doi: 10.1142/S0218127499000675
|
[15] |
Cuomo K M,Oppenheim A V.Circuit implementation of synchronized chaos with applications to communications[J].Phys Rev Lett,1993,71(1):65—68. doi: 10.1103/PhysRevLett.71.65
|
[16] |
Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys Lett A,1992,170(3):421—428. doi: 10.1016/0375-9601(92)90745-8
|
[17] |
Gregory D V,Rajarshi R.Chaotic communication using time-delayed optical systems[J].Int J Bif Chaos,1999,9(10):2129—2156. doi: 10.1142/S0218127499001565
|
[18] |
Nayfeh A H,Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons,1979.
|
[19] |
Ott E,Grebogi C,Yorke A.Controlling chaos[J].Phys Rev Lett,1990,64(5):1196—1199. doi: 10.1103/PhysRevLett.64.1196
|