| Citation: | QIN Mao-chang, MEI Feng-xiang, XU Xue-jun. Nonclassical Potential Symmetries and Invariant Solutions of Heat Equation[J]. Applied Mathematics and Mechanics, 2006, 27(2): 217-222. | 
	                | [1] | 
					 Olver P J.Applications of Lie Groups to Differential Equations[M].New York:Springer-Verlag,1996. 
					
					 | 
			
| [2] | 
					 Ibragimov N H.Transformation Groups Applied to Mathematical Physics[M].New York:Springer-Verlag,1987. 
					
					 | 
			
| [3] | 
					 Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989. 
					
					 | 
			
| [4] | 
					 Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic,1989. 
					
					 | 
			
| [5] | 
					 Bluman G W,Cole J D.The general similarity solutions of the heat equation[J].Journal of Mathematics and Mechanics,1969,18(5):1025—1042. 
					
					 | 
			
| [6] | 
					 Bluman G W,Kumei S.New classes of symmetries for partial differential equation[J].Journal of Mathematical Physics,1988,29(4):806—811. doi:  10.1063/1.527974 
					
					 | 
			
| [7] | 
					 Johnpiliai A G,Kara A H.Nonclassical potential symmetry generators of differential equations[J].Nonlinear Dynamics,2002,30(2):167—177. doi:  10.1023/A:1020498600432 
					
					 | 
			
| [8] | 
					 Gandaries M L.Nonclassical potential symmetries of the Burgers equation[A].In:Shkil M,Nikitin A,Boyko V Eds.Symmetry in Nonlinear Mathematical Physics[C].Vol 1.Klev:Institute of Mathematics of NAS of Ukraine,1997,130—137. 
					
					 |