Citation: | LI Qiang, FENG Jian-hu, CAI Ti-min, HU Chun-bo. Difference Scheme for Two-phase Flow[J]. Applied Mathematics and Mechanics, 2004, 25(5): 488-496. |
[1] |
Toumi I,Kumbaro A. An approximate linearized Riemann solver for a two-phase model[J].J Comput Phys,1996,124:286—300. doi: 10.1006/jcph.1996.0060
|
[2] |
Maso G Dal, Floch P Le, Murat F. Definition and weak stability of nonconservative products[J].J Math Pures Appl,1995,74:483—548.
|
[3] |
Sainaulieu L. Finite volume approximate of two phase-fluid flows based on an approximate Roe-type Riemann solver[J].J Comput Phys,1995,121:1—28. doi: 10.1006/jcph.1995.1176
|
[4] |
Saurel R, Abgrall R. A multiphase Godunov method for compressible multi-fluid and multiphase flows[J].J Comput Phys,1999,150:425—467. doi: 10.1006/jcph.1999.6187
|
[5] |
Abgrall R. How to prevent pressure oscillations in the multicomponent flow calculations: A quasi conservative approach[J].J Comput Phys,1996,125:150—160. doi: 10.1006/jcph.1996.0085
|
[6] |
Drew D A.Mathematical modeling of two-phase flow[J].Ann Rev Fluid Mech,1983,15:261—291. doi: 10.1146/annurev.fl.15.010183.001401
|
[7] |
Saurel R, Gallout T. Models et Methods Numeriques Pour Les Ecoulements Fluids[M]. Cours de DEA, Center de Mathematiques.Provence:University de Provence,1998.
|
[8] |
Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag,1997.
|
[9] |
Roe P L. Approximate Riemann solver, parameter vectors, and difference schemes[J].J Comput Phys,1981,43:357—372. doi: 10.1016/0021-9991(81)90128-5
|