Citation: | MA Jian-wei, YANG Hui-zhu. Multiresolution Symplectic Scheme for Wave Propagation in Complex Media[J]. Applied Mathematics and Mechanics, 2004, 25(5): 523-528. |
[1] |
钟万勰.弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.
|
[2] |
XU Xin-sheng, ZHONG Wan-xie, ZHANG Hong-wu.The Saint-Venant problem and principle in elasticity[J].Int J Solids Structures,1997,34(22):2815—2827. doi: 10.1016/S0020-7683(96)00198-9
|
[3] |
Hirono I, Lui W W,Yokoyama K. Time-domain simulation of electromagnetic field using a symplectic integrator[J].IEEE Trans Microwave and Guided Wave Lett,1997,7(9):79—281.
|
[4] |
马坚伟,徐新生,杨慧珠,等. 平面流体扰动与哈密顿体系[J].应用力学学报, 2001, 18(4): 82—86.
|
[5] |
Beylkin G. On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer Anal,1992,29(6):1716—1740. doi: 10.1137/0729097
|
[6] |
MA Jian-wei,ZHU Ya-ping,YANG Hui-zhu.Multiscale-combined seismic waveform inversion using orthogonal wavelet transform[J].Electron Lett,2001,37(4):261—262. doi: 10.1049/el:20010131
|
[7] |
马坚伟,杨慧珠.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415—1420.
|
[8] |
Dahmen W. Wavelet methods for PDEs-some recent developments [J].J Comput Appl Math,2001,128(1/2):133—185. doi: 10.1016/S0377-0427(00)00511-2
|
[9] |
Holmstrom M. Solving hyperbolic PDEs using interpolating wavelets [J]. SIAM J Sci Comput,1999,21(2): 405—420. doi: 10.1137/S1064827597316278
|
[10] |
Vasilyev O, Bowman C. Second-generation wavelet collocation method for the solution of PDEs[J].J Comput Phys,2000,165(2): 660—693. doi: 10.1006/jcph.2000.6638
|
[11] |
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(2): 473—499. doi: 10.1006/jcph.1999.6372
|
[1] | WU Yucheng, YIN Hong, PENG Zhenrui. Stochastic Model Updating Based on Kriging Model and Lifting Wavelet Transform[J]. Applied Mathematics and Mechanics, 2022, 43(7): 761-771. doi: 10.21656/1000-0887.420128 |
[2] | ZHANG Lei, TANG Conggang, WANG Dequan, LIU Bing. Application of the Wavelet Galerkin Method to Solution of Nonlinear Bifurcation Problems[J]. Applied Mathematics and Mechanics, 2021, 42(1): 27-35. doi: 10.21656/1000-0887.410085 |
[3] | LIU Xiaomei, ZHOU Gang, ZHU Shuai. A Highly Precise Symplectic Direct Integration Method Based on Phase Errors for Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 595-608. doi: 10.21656/1000-0887.390249 |
[4] | SUN Guomin, ZHANG Xiaozhong, SUN Yanhua. Multi-Scale Structure Optimization Design Based on Eigenvalue Analysis[J]. Applied Mathematics and Mechanics, 2019, 40(6): 630-640. doi: 10.21656/1000-0887.390207 |
[5] | WEI Yi, DENG Zi-chen, LI Qing-jun, WANG Yan. Effects of Solar Radiation Pressure on Orbits of Space Solar Power Station[J]. Applied Mathematics and Mechanics, 2017, 38(4): 399-409. doi: 10.21656/1000-0887.370309 |
[6] | REN Shi-lei, HAN Fei-peng, XIE Bin, HUANG Bo, HAO Peng-fei. Numerical Simulation of Flow Fields in Porous Media Based on the 3D CFD-DEM[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1093-1102. doi: 10.21656/1000-0887.370326 |
[7] | JIANG Xian-hong, DENG Zi-chen, ZHANG Kai, WANG Jia-qi. A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 988-998. doi: 10.21656/1000-0887.370365 |
[8] | WU Feng, ZHONG Wan-xie. The Constrained Hamilton Variational Principle for Shallow Water Problems and the Zu-Type Symplectic Algorithm[J]. Applied Mathematics and Mechanics, 2016, 37(1): 1-13. doi: 10.3879/j.issn.1000-0887.2016.01.001 |
[9] | HE Zheng, WANG Xu-wei, Djimedo Kondo. A Meso-Micromechanics Approach to the Strength Criteria for Particle-Reinforced Radiation-Shielding Materials[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1306-1314. doi: 10.3879/j.issn.1000-0887.2015.12.009 |
[10] | CHENG Ke-peng, WANG Xian-jie, ZHANG Xun-an, LIAN Ye-da. Collaborative Optimization of Structures With Periodic Composite Materials[J]. Applied Mathematics and Mechanics, 2015, 36(7): 725-732. doi: 10.3879/j.issn.1000-0887.2015.07.005 |
[11] | XU Xiao-ming, ZHONG Wan-xie. Symplectic Integration for Multibody Dynamics Based on Quaternion Parameters[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1071-1080. doi: 10.3879/j.issn.1000-0887.2014.10.001 |
[12] | WU Feng, XU Xiao-ming, GAO Qiang, ZHONG Wan-xie. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001 |
[13] | DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010 |
[14] | GAO Shi-qiao, JIN Lei, M. Kasperski, LIU Hai-peng, LI Ming-hui. Nonlinear Analysis of a Structure Loaded by a Stochastic Excitation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1318-1324. |
[15] | ZENG Wen-ping, HUANG Lang-yang, QIN Meng-zhao. The Multi-Symplectic Algorithm for“Good” Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2002, 23(7): 743-748. |
[16] | ZHANG Xing-wu, WU Ji-ke, ZHU Hai-ping, HUANG Ke-fu. Generalized Canonical Transformation and Symplectic Algorithm of the Autonomous Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2002, 23(9): 915-920. |
[17] | LIU Hai-feng, ZHOU Wei-xing, WANG Fu-chen, GONG Xin, YU Zun-hong. The Wavelet Transform of Periodic Function and Nonstationary Periodic Function[J]. Applied Mathematics and Mechanics, 2002, 23(9): 943-950. |
[18] | Liu Bin, Dong Qinxi. Wavelet Modeling and Forecasting and Its Application in the Chinese Monetary Multiplier[J]. Applied Mathematics and Mechanics, 1999, 20(8): 856-862. |
[19] | Luo Shaoming, Zhang Xiangwei. The Wavelet Aanalysis Method of Stationary Random Processes[J]. Applied Mathematics and Mechanics, 1998, 19(10): 859-864. |
[20] | Zheng Jibing, Gao Hangshan, Guo Yinchao, Meng Guang. Application of Wavelet Transform to Bifurcation and Chaos Study[J]. Applied Mathematics and Mechanics, 1998, 19(6): 556-563. |