YANG Shou-zhi. Poly-Scale Refinable Function and Their Properties[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1477-1485.
Citation: YANG Shou-zhi. Poly-Scale Refinable Function and Their Properties[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1477-1485.

Poly-Scale Refinable Function and Their Properties

  • Received Date: 2004-11-16
  • Rev Recd Date: 2006-08-18
  • Publish Date: 2006-12-15
  • Poly-scale refinable function with dilation factor a was introduced. The existence of solutions of poly-scale refinable equation was investigated. Specially, necessary and sufficient conditions for the orthonormality of solution function phi of a poly-scale refinable equation with integer dilation factor a were established. Some properties of poly-scale refinable function were discussed. Several examples illustrating how to use the method to construct poly-scale refinable function were given.
  • loading
  • [1]
    Daubechies I.Orthonormal bases of compactly supported wavelets[J].Comm Pure Appl Math,1988,41(7):909—996. doi: 10.1002/cpa.3160410705
    [2]
    Daubechies I,Lagarias J C.Two-scale difference equations Ⅰ—Existence and global regularity of solutions[J].SIAM J Math Anal,1991,22(5):1388—1410. doi: 10.1137/0522089
    [3]
    Chui C K,LIAN Jian-ao.A study on orthonormal multiwavelets[J].J Appl Numer Math,1996,20(3):273—298. doi: 10.1016/0168-9274(95)00111-5
    [4]
    Lian J.Orthogonal criteria for multiscaling functions[J].Appl Comput Harmon Anal,1998,5(3):277—311. doi: 10.1006/acha.1997.0233
    [5]
    YANG Shou-zhi,CHENG Zheng-xing,WANG Hong-yong.Construction of biorthogonal multiwavelets[J].J Math Anal Appl, 2002,276(1):1—12. doi: 10.1016/S0022-247X(02)00240-8
    [6]
    YANG Shou-zhi.A fast algorithm for constructing orthogonal multiwavelets[J].ANZIAM Journal,2004,46(2):185—202. doi: 10.1017/S144618110001378X
    [7]
    Cabrelli A C,Gordillo M L. Existence of multiwavelets in Rn[J].Proc Amer Math Soc,2002,130(5):1413—1424. doi: 10.1090/S0002-9939-01-06223-2
    [8]
    Dyn N,Levin D.Subdivision schemes in geometric modelling[J].Acta Numer,2002,11(1):73—144. doi: 10.1017/CBO9780511550140.002
    [9]
    Cohen A,Dyn N,Matei B.Quasilinear subdivision schemes with applications to ENO interpolation[J].Appl Comput Harmon Anal,2003,15(2):89—116. doi: 10.1016/S1063-5203(03)00061-7
    [10]
    Dekel S, Leviatan D. Wavelet decompositions of nonrefinable shift invariant spaces[J].Appl Comput Harmon Anal,2002,12(2):230—258. doi: 10.1006/acha.2001.0373
    [11]
    Blu T,Thvenaz P,Unser M.MOMS: Maximal-order interpolation of minimal support[J].IEEE Trans Image Process,2001,10(7):1069—1080.
    [12]
    Dekel S,Dyn N.Poly-scale refinablity and subdivision[J].Appl Comput Harmon Anal,2002,13(1):35—62. doi: 10.1016/S1063-5203(02)00006-4
    [13]
    YANG Shou-zhi,YANG Xiao-zhong.Computation of the support of multiscaling functions[J].Chinese J Numer Math Appl,2005,27(2):1—8.
    [14]
    PENG Li-zhong,WANG Yong-ge.Parameterization and algebraic structure of 3-band orthogonal wavelet systems[J].Sci China Ser A,2001,44(12):1531—1543. doi: 10.1007/BF02880793
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2503) PDF downloads(753) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return